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Summary

A magnetic resonance imaging (MRI) scanner is a medical diagnostic device for imaging
of the internal structures of the human body. A well known problem of MRI scanners is
their large noise production (up to 90 − 120 dB(A)) during the scanning process. The
noise is produced by the strong vibration of the so-called gradient coil system. In the
future, it is expected that new, faster scanning techniques will increase the noise problem.
In the interest of patients, operators, and medical staff, it will be necessary to reduce
these noise levels considerably in future scanners. Therefore, it is necessary to assess the
acoustic performance of the MRI scanner early in the design phase to obtain substantially
quieter scanners.

A model for the noise production of MRI scanners can be subdivided in two parts: a
structural and an acoustic part. The structural part of the model deals with the generation
of structural vibrations due to Lorentz forces excitations. The acoustic part describes
the transformation of the structural vibrations into audible noise. This thesis only deals
with models for the acoustic part of the noise problem. In a companion doctoral thesis,
Kessels [1999] covers the structural part of the MRI noise problem and structural-acoustic
optimization techniques.

An adequate acoustic model for low-noise design of MRI scanners should satisfy two
important demands: the model must incorporate the relevant aspects of the MRI scanner
noise problem and at the same time be practically manageable for the developers of MRI
scanners. Therefore, the objective of research presented in this thesis is twofold. On the
one hand the research is aimed at the development of accurate and efficient numerical
tools to model the noise problem of the MRI scanner. On the other hand it tries to
identify the acoustically relevant parameters in the design of a more quiet MRI scanner.

In order to reach the first part of the objective, the development of accurate and effi-
cient numerical tools, three acoustic formulations were developed to model the acoustic
radiation of the MRI scanner:
• A semi-analytical formulation for the acoustic radiation of a finite duct with open ends

mounted with infinite flanges.

• An acoustic boundary element method (BEM) with Fourier elements.

• A modal description of the acoustics based on the radiation modes formulation.
The semi-analytical formulation was developed to gain insight into the physics of this
specific acoustic problem. The method is derived within the general linear duct acous-
tics theory. The acoustic field inside the finite duct with infinite flanges is described with
Fourier-Bessel duct modes. The reflection of acoustic waves at the duct’s exits is described
with reflection coefficients. Due to the use of special integration techniques, the efficiency
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of this method, compared to element based discretization methods, was further improved.
Moreover, the formulation offers more insight into the acoustic characteristics of these
baffled, finite duct-like structures. However, this model is only applicable to model scan-
ners with a simplified bore having a constant cross section. Therefore, this model should
be used primarily for exploratory design studies of general influence parameters, not for
detailed acoustic studies of realistically shaped MRI scanners.

A Fourier BEM model was developed to enable the acoustic analysis of axisymmetric
structures in general and MRI scanners with a more complex geometry in particular.
Compared to acoustic calculations with 3-dimensional BEM formulations, the computation
times using the Fourier BEM formulation can be reduced from weeks to one hour. For
that, the scanner’s geometry is assumed to be axisymmetric and the acoustic variables are
described with Fourier series in circumferential direction. This splits up the 3-dimensional
acoustic radiation problem into a series of ‘quasi-axisymmetric’ radiation problems; one
for each Fourier harmonic in the series.

The novelty of the Fourier BEM method presented in this thesis lies in the handling of
the Fourier integrals in the formulation. Traditionally, these are computed separately for
each Fourier harmonic in the series, which requires large computational efforts. By using
fast Fourier transform (FFT) algorithms, these Fourier integrals can be computed simulta-
neously, which causes a considerable speedup, especially when the Fourier series contain
more than a few terms.

With the radiation modes formulation, it is possible to identify those components of the
vibration field that contribute most to the radiated sound power. Through an eigenvalue
analysis of the so-called power coupling matrix, the radiation modes and their associated
radiation efficiencies can be found. With these, the vibration distribution can be subdivided
into radiating and non-radiating components. The radiation mode shapes and efficiencies
only depend on the frequency and on the geometry of the radiating surface, not on the
structural properties of the radiator.

Design alterations to an important class of structural parameters (e.g. the material prop-
erties, support or load) only change the boundary conditions of the acoustic problem, not
the geometry of the acoustic domain itself. This observation was used in a model reduc-
tion technique based on the radiation modes formulation. Using this technique, only one
complete acoustic analysis is required for each geometry in a design study. In subsequent
acoustic analyses, the results of the first analysis can then be reused. Hence, the total
computation time for all acoustic analyses can be drastically reduced. This is especially
advantageous in optimization studies.

To reach the second part of the research objective, the research on the relevant design
parameters for an MRI scanner, the three developed acoustic tools were deployed in a
number of preliminary design studies. First, as a rough approximation, the MRI scanner was
modeled as a finite duct ending in infinite flanges. This model was analyzed using the semi-
analytical formulation. The acoustics of this simplified MRI scanner model, were found
to be dominated by so-called near cut-on resonances. These resonances are caused by a
high auto-reflection coefficient of a Fourier-Bessel duct mode near its cut-on frequency.
The high reflection causes a large amount of the outgoing acoustic wave to be reflected
back into the duct. If the phase of outgoing and reflected waves match well, then resonance
occurs. This causes peaks in the frequency spectra of the sound power, the sound pressure
and the radiation efficiency levels.
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The geometry of the bore was found to be an acoustically important parameter for the
MRI design. MRI scanner models with a more realistically shaped bore were analyzed with
the Fourier BEM. For these models, the near cut-on resonances are still visible, but the
corresponding peaks in the noise spectra are smaller. This is caused by a gradually increas-
ing radius of the bore towards the ends, which decreases the auto-reflection coefficients
and therefore reduces the resonance phenomena. The radius of the part of the bore with
constant cross-section determines the location of the cut-on frequencies. The influence
on the acoustics of the outer scanner diameter was found to be negligibly small.

Another design parameter for the MRI scanner is the presence of a patient in the MRI
bore. The influence of the patients position in the scanner and the influence of acoustic
absorption of the patient’s clothing on the scanner’s sound radiation was investigated. The
position of the patient was found to have some influence on the location of the ‘cut-on’
frequencies, whereas the clothing absorption seemed to cancel out these effects. Because
of the observed small influence on the total noise levels, it is unnecessary for design
purposes to model a patient in the MRI scanner.

The potential of the developed acoustic tools was demonstrated in a number of param-
eter studies on MRI scanner models with different bore geometries and different loading
conditions. In these studies, the structural composition of the gradient coil system was
varied, in order to find a gradient coil system which minimizes the noise production of
the MRI scanner.

The parameter studies revealed that the radiated sound power and the sound pressure
level in the MRI bore respond similarly to design changes, in contrast to the velocity level.
This means that the radiated power is an appropriate design objective function, because it
is directly related to the noise that is experienced. Additionally, it enables the use of the
radiation modes reduction technique. The studies show that the structural composition
of the optimal gradient coil system depends on the shape of the MRI bore. This means
that different gradient coil system designs should be used for MRI scanners with a different
bore shape.

Optimum gradient coil system designs are characterized by a mismatch between peaks in
the vibration level spectrum and near cut-on resonances. This characteristic is observed
both for excitations with only a single and for excitations with multiple circumferential
Fourier harmonics. However, with an increasing number of these Fourier harmonics, the
number of velocity level peaks and the number of near cut-on resonances also increases.
Therefore, the mismatch between vibration level peaks and cut-on resonances will be
harder to achieve. This results in a smoothening of the noise spectra and a smaller range
between optimal and ‘worst-case’ acoustic designs when the excitation contains more
circumferential Fourier harmonics. Nevertheless, this range is still very significant for the
design.

The preliminary design studies showed that the developed acoustic tools combined with
the structural tools of Kessels [1999] enable a relatively easy and low-cost evaluation of
the influence of design changes on the acoustic radiation of MRI scanners. This makes the
use of these kinds of acoustic tools in an industrial design environment for MRI scanners
or other axisymmetric structures viable.
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Samenvatting

Een MRI-scanner is een medisch diagnostisch apparaat waarmee, op basis van het fysisch
principe van kernspinresonantie, afbeeldingen kunnen worden gemaakt van de interne
structuren in het menselijk lichaam. Een bekend probleem bij MRI scanners is hun hoge
geluidproductie (in de orde 90 − 120 dB(A)) tijdens het scanproces. Het geluid wordt
veroorzaakt door sterke trillingen in de zogenaamde gradiëntspoelen. Door nieuwe, snel-
lere scantechnieken zal dit geluidsprobleem naar verwachting in de toekomst alleen maar
groter worden. In het belang van patiënten, bedienend personeel en de bij een MRI onder-
zoek direct betrokken medische staf, is het nodig om in toekomstige scanners het geluid
aanzienlijk te reduceren. Daarom is het noodzakelijk om tijdens het ontwerp van de scan-
ner reeds de geluidsproductie te kunnen beoordelen om te trachten tot een geluidsarme
MRI scanner te komen.

Het geluidsprobleem van MRI scanners kan modelmatig worden opgedeeld in twee stuk-
ken: een mechanisch en een akoestisch deel. Het mechanisch deel betreft de opwekking
van mechanische trillingen door Lorentzkrachten. Het akoestische gedeelte beschrijft de
omzetting van mechanische trillingen in geluid. Dit proefschrift handelt alleen over mo-
dellen voor het akoestisch deelprobleem, terwijl het proefschrift van Kessels [1999] gaat
over het mechanisch deelprobleem en over mechanisch-akoestisch optimaliseren van MRI
scanners.

Een adequaat akoestisch model voor het ontwerp van MRI scanners moet voldoen aan
twee eisen. Het model moet enerzijds de voor het geluidsprobleem relevante aspecten van
een MRI scanner bevatten en anderzijds praktisch hanteerbaar zijn voor de ontwikkelaars
van MRI scanners. Het doel van dit promotieproject is daarom tweeledig. Het onderzoek
is zowel gericht op de ontwikkeling van betrouwbare en efficiënte rekenmethoden om
het geluidsprobleem van een MRI scanner te kunnen modeleren, als op de bestudering
van akoestisch relevante invloedsfactoren in een ontwerp van een stillere MRI scanner.

Ten behoeve van het eerste deel van de doelstelling, de ontwikkeling van nauwkeurige en
efficiënte rekenmethoden, zijn drie akoestische formuleringen ontwikkeld om het geluids-
probleem van bij benadering axisymmetrische MRI scanners te kunnen modeleren:
• Een semi-analytische methode voor de geluidsafstraling van een eindige pijp met open

uiteinden waaraan oneindig grote flenzen zijn bevestigd.

• Een akoestische randelementenmethode met Fourier-elementen (Fourier BEM).

• Een modale beschrijving van de akoestiek op basis van de zogenaamde afstraalmodes.
De semi-analytische methode is ontwikkeld om inzicht te verschaffen in de fysica van dit
specifieke geluidsprobleem. Deze methode is afgeleid binnen de algemene lineaire theorie
van kanaalakoestiek. Er wordt uitgegaan van een beschrijving van het geluidsveld in een
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korte pijp met oneindige flenzen, met behulp van Fourier-Bessel basisfuncties. De reflectie
van geluidsgolven bij de uiteinden van de pijp wordt in rekening gebracht door middel van
reflectiecoëfficienten. Het gebruik van speciale integratietechnieken maakt de methode
een stuk efficiënter dan discretisatie methoden gebaseerd op elementenformuleringen.
Daarnaast biedt de methode meer fysisch inzicht in de specifieke akoestische eigenschap-
pen van eindige pijpvormige constructies. Een beperking van dit model is echter dat het
slechts bruikbaar is voor scanners met een sterk vereenvoudigde geometrie, waarbij de
dwarsdoorsnede van de MRI-tunnel (‘bore’) constant moet zijn. Daarom is dit model ei-
genlijk alleen geschikt voor verkennende ontwerpstudies naar algemene invloedsfactoren,
en niet voor detailstudies van MRI scanners met een meer realistische geometrie.

Het akoestische BEM model met Fourier-elementen maakt het mogelijk om de akoestiek
te modelleren van axisymmetrische constructies in het algemeen en MRI scanners met een
meer realistische geometrie in het bijzonder. Ten opzichte van akoestische berekeningen
met een 3-dimensionale BEM formulering, worden met deze zogenaamde Fourier BEM
formulering de rekentijden teruggebracht van enkele weken tot een klein uur. Daartoe
wordt uitgegaan van een axisymmetrische (scanner) geometrie en worden de akoestische
variabelen in omtreksrichting beschreven met een Fourier-reeks. Effectief wordt daar-
mee het 3-dimensionale akoestische afstralingsprobleem opgesplitst in een aantal ‘quasi-
axisymmetrische’ afstralingsproblemen; één voor iedere Fourier-component in de reeks-
ontwikkeling.

De innovatie van de Fourier BEM formulering die in dit proefschrift wordt beschreven zit
hem in de manier waarop de Fourier-integralen in de formulering worden bepaald. Tradi-
tioneel gebeurt dit afzonderlijk voor elke Fourier-component in de reeksontwikkelingen,
wat lange rekentijden oplevert. Door gebruik te maken van zogenaamde ‘fast Fourier
transform’ (FFT) algoritmen, kunnen deze integralen simultaan worden bepaald, wat een
enorme rekentijdreductie kan opleveren. Deze reductie is vooral merkbaar wanneer de
Fourier-reeksen veel termen bevatten.

De beschrijving met akoestische afstraalmodes geeft aan welke componenten van het tril-
lingsveld het meest bijdragen aan de geluidsvermogenproductie. Door een eigenwaarde-
analyse toe te passen op de zogenaamde vermogenskoppelingsmatrix vindt men de af-
straalmodes met bijbehorende afstraalefficiënties. Daarmee kan het totale trillingsveld
worden onderverdeeld in componenten die goed afstralen en componenten die slecht
afstralen. De afstraalmodes en -efficiënties hangen alleen af van de frequentie en de geo-
metrie van het afstralende oppervlak, en dus niet van de mechanische eigenschappen van
de straler.

Ontwerpwijzigingen aan een belangrijke klasse van constructieparameters (b.v. materiaal-
eigenschappen, ophanging of belasting) veranderen alleen de randvoorwaarden van het
akoestische probleem en niet de geometrie van het akoestische domein. Deze constate-
ring is gebruikt in een modelreductietechniek gebaseerd op de afstraalmodesformulering.
Met deze techniek is in een ontwerpstudie slechts één volledige akoestische analyse no-
dig per geometrie. In daaropvolgende akoestische analyses kunnen de resultaten van de
eerste analyse worden hergebruikt. De totale rekentijd voor alle akoestische analyses te-
zamen kan daarmee drastisch worden gereduceerd. Dit is bij optimaliseringsstudies een
bijzonder belangrijk voordeel.

Voor het tweede deel van de doelstelling van het promotieproject, het onderzoek naar
akoestische invloedsfactoren voor het MRI scanner ontwerp, zijn de drie ontwikkelde re-
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kenmethodes ingezet voor een aantal verkennende ontwerpstudies. Allereerst is als grove
benadering de MRI scanner gemodelleerd als een korte pijp met oneindige flenzen aan
de open uiteinden. Uit deze studie, die verricht is met behulp van de semi-analytische
beschrijving, is gebleken dat de akoestiek van dit sterk gesimplificeerde MRI model wordt
gedomineerd door zogenaamde ‘nabij-cut-on’ resonanties. Deze resonanties worden ver-
oorzaakt door een hoge zelfreflectiecoefficiënt van een Fourier-Bessel mode van de pijp
vlak boven de ‘cut-on’ frequentie van die mode. Door deze reflectie wordt een groot
deel van een uitgaande Fourier-Bessel mode gereflecteerd in de pijp. Als nu de fase van
heen- en teruggaande golven goed aansluiten, dan treedt er resonantie op. Dit veroor-
zaakt pieken in de frequentiespectra van de niveau’s van zowel het geluidsvermogen, als
de geluidsdruk en de afstraalefficiëntie.

De geometrie van de MRI-tunnel blijkt een belangrijke invloedsfactor voor het ontwerp.
Als, met behulp van de Fourier BEM beschrijving, MRI scanners met een meer realistische
geometrie worden gemodelleerd, verminderen de pieken in de frequentiespectra van ge-
luidsafstraling die worden veroorzaakt door de ‘nabij-cut-on’ resonanties. Dit komt door
de geleidelijk groter wordende dwarsdoorsnede van een meer realistische MRI-tunnel,
waardoor de impedantiesprong aan de tunneluiteinden minder abrupt wordt. Dit heeft
tot gevolg dat de zelfreflectiecoëfficiënten minder groot zijn en het resonantieverschijnsel
kleiner wordt. Daarbij bepaalt de binnendiameter van het deel van de tunnel met een
constante dwarsdoorsnede de ligging van de ‘cut-on’ frequenties. De invloed van de bui-
tendiameter van de scanner op de afstraling blijkt verwaarloosbaar klein te zijn.

Een andere invloedsfactor voor het MRI ontwerp is de aanwezigheid van een patiënt in
de scanner. De invloed van een positie van de patiënt in de scanner en de invloed van
geluidsabsorptie van kleding van de patiënt op de afstraling van de scanner is onderzocht
met behulp van de Fourier BEM techniek. De positie van de patiënt in de scanner heeft
vooral invloed op de ligging van de ‘cut-on’ frequenties. Dit effect wordt echter ten dele
teniet gedaan door de absorptie van de kleding van de patiënt op te voeren. Uit het
onderzoek blijkt dat de invloed van de patiënt op het uiteindelijke geluidsniveau dusdanig
gering is, dat het onnodig is om hier rekening mee te houden in het ontwerp van de MRI
scanner.

De kracht van het ontwikkelde akoestisch rekengereedschap wordt verder gedemon-
streerd in een aantal parameterstudies aan MRI scanners met een verschillende tunnelge-
ometrie en verschillende krachtsaanstoting. In deze ontwerpstudies werd de mechanische
configuratie van de gradiëntspoelen gevarieerd en werd gezocht naar een gradiëntspoel-
constructie die de geluidproductie van de scanner minimaliseert. Uit deze parameterstu-
dies is gebleken dat het afgestraalde geluidsvermogen en de geluidsdruk in de MRI-tunnel
hetzelfde reageren op ontwerpwijzigingen, in tegenstelling tot het snelheidsniveau aan de
wand. Dit betekent dat een beoordeling van de geluidsproductie van een MRI ontwerp
het beste kan gebeuren aan de hand van het geluidsvermogen aangezien dit een directe
maat is voor de hinderbepalende geluidsproductie en doordat het gebruik van deze maat
de toepassing van de modelreductietechniek op basis van afstraalmodes mogelijk maakt.
Daarnaast blijkt dat de configuratie van de optimale gradiëntspoel afhangt van de vorm
van de MRI-tunnel. Dit betekent dat bij elk MRI scanner ontwerp met een verschillende
tunnelgeometrie ook een andere optimale gradiëntspoelconfiguratie hoort.

Kenmerkend voor de optimale gradı̈entspoelconfiguraties is het feit dat voor die scanners
de pieken in het trillingsspectrum op een zodanige plaats liggen dat ze de ‘nabij-cut-on’ re-
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sonanties zo weinig mogelijk aanstoten. Dit geldt voor krachtsaanstotingen met zowel een
enkele als met meerdere Fourier-componenten in omtreksrichting. Maar door toename
van het aantal Fourier-componenten in de aanstoting neemt ook het aantal mechanische
en mogelijke ‘nabij-cut-on’ resonanties toe. Daardoor is het moeilijker om aanstoting van
de ‘nabij-cut-on’ resonanties door pieken in het trillingsspectrum te voorkomen. Dit resul-
teert in gladdere akoestische spectra en een kleinere spreiding tussen akoestisch optimale
en akoestisch slechte ontwerpen als er meerdere Fourier-componenten in de aanstoting
zitten. Desondanks blijft deze spreiding nog zeer relevant voor het ontwerp.

De verkennende studies naar de invloedsfactoren hebben aangetoond dat de ontwikkelde
rekenmethoden in combinatie met de mechanische modellen van Kessels [1999] het mo-
gelijk maken om op relatief eenvoudige en goedkope wijze de invloed van ontwerpwijzi-
gingen op de akoestische afstraling van MRI scanners te bepalen. Dit maakt de inzet van
dit soort rekengereedschappen in een industriële ontwerpomgeving voor MRI scanners of
andere axisymmetrische constructies haalbaar.
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General notation

A, a, α scalar (italic Latin and Greek symbols)
A, a constant; standard function (upright Latin symbols)
a, α vector; column (bold italic Latin and Greek lowercase letters)
A, Γ tensor; matrix (bold italic Latin and Greek capitals)

Operators and functions

a∗ complex conjugate of a
Re a real part of a
Im a imaginary part of a
|a| absolute value of a
|a| length of vector a
ā time average of a
〈a〉 spatial average of a
da/dr total derivative of a with respect to r
∂a/∂r partial derivative of a with respect to r
A−1 inverse of A
AT transpose of A
AH hermitian (complex conjugate transpose) of A
a · b inner product between vectors a and b
∇a gradient operator on a
δ(a) Dirac function on argument a
δi j Kronecker delta (i, j)
Jm Bessel function of the first kind of order m
Im modified Bessel function of the first kind of order m
Ym Bessel function of the second kind of order m
Km modified Bessel function of the second kind of order m
H(1)

m ,H(2)
m Hankel functions of the first and second kind of order m

Latin symbols

a L inner radius
A L outer radius
c0 L T−1 sound velocity in air
co − oscillation parameter
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cs − steepness parameter
er, eθ , ez − radial, circumferential and axial unit basis vectors in a cylindri-

cal coordinate system
f T−1 frequency
fmµ T−1 cut-on frequency of Fourier-Bessel duct mode (m, µ)
G(x, y) L−1 free space Green’s function of points x and y
J − Jacobian
k L−1 free field acoustic wavenumber
kmµ L−1 axial wavenumber of Fourier Bessel duct mode (m, µ)
L L duct half length
L − axisymmetric body generator
Lv − velocity level
LW − sound power level
Lp − sound pressure level
m − circumferential Fourier harmonic number
n − surface normal vector inward the acoustic medium
p M T−2 L−1 acoustic pressure
P M L2 T−3 sound power
Q L3 T−1 volume source strength
r L radial coordinate
S L2 surface
t L thickness
u L T−1 velocity vector
ur L T−1 radial component of velocity
uθ L T−1 circumferential component of velocity
uz L T−1 axial component of velocity
v L T−1 surface normal velocity
V L3 volume
z L axial coordinate
z0 M L−2 T−1 specific impedance of air
zp M L−2 T−1 specific impedance of patient

Greek symbols

α − absorption coefficient
αmµ L−1 radial wavenumber of duct mode (m, µ)
ζ − modal contribution coefficient
η L T−1 normal velocity boundary condition
θ − circumferential coordinate
λ − eigenvalue
µ − radial order of incident duct mode
ν − radial order of reflected duct mode
φ − basis function
ξ L local element coordinate
ρ M L−3 density
σ − radiation efficiency
ψ L T−1 radiation mode



Notation xxi

ω T−1 angular frequency

Constants

i imaginary unit
e natural logarithmic base
π circumference to diameter ratio of a circle



xxii Notation



1 Introduction

1.1 Motivation
Acoustic engineers today are challenged to apply numerical tools to analyze the acous-
tics of vibrating structures. The use of these tools is becoming increasingly widespread.
However, the demands of the acoustic engineers are not yet completely fulfilled. The
performance of computer hardware and software is not sufficient to make full acoustic
analyses of large complex structures feasible. This became apparent when dealing with the
acoustic design of a Magnetic Resonance Imaging (MRI) scanner.

The MRI scanner

A Magnetic Resonance Imaging (MRI) scanner (see figure 1.1) is a diagnostic device for
medical imaging of the internal structures (soft tissues), flow and other physiological phe-
nomena in the human body. The imaging process is based on nuclear magnetic resonance:
when a static magnetic field is applied, the spins of the nuclei of atoms in the human body
with an uneven number of protons are aligned and start to precess, i.e., spin around the
magnetic field lines. The precession (or Larmor) frequency is linearly dependent on the
magnetic field strength. The alignment causes a net longitudinal magnetization. For the
imaging process, this alignment is disturbed by sending a radio frequent (RF) pulse which
excites the nuclei and brings the spins in phase. The frequency of the pulse must be the
same as the precession frequency. This phenomenon is called magnetic resonance and
causes a spiraling transverse magnetization. When the RF signal is switched off, the spin
axes of the nuclei will realign and dephase. This results in a decrease of transverse mag-
netization which can be measured. The amplitude of the measured signal depends on the
tissue properties. The measured signals are processed to form an image. Spatial encoding
of the imaging information is achieved by superimposing a gradient magnetic field on top of
the static field which directly influences the precession frequency. Based on the frequency
and phase information of the measured signals, the origin of the components of each signal
can be deduced. A more detailed and mathematical description of the physical principles
of magnetic resonance can be found in one of the many textbooks on this subject [e.g.
Vlaardingerbroek and den Boer, 1996; Hashemi and Bradley, 1997].

A well known problem of MRI scanners is their large noise production during the imaging
process [e.g. Hurwitz et al., 1989; Hedeen and Edelstein, 1997; Cho et al., 1998]. Both
patient and operator are exposed to high noise levels (up to 90 − 120 dB(A)), mainly
caused by the vibration of the so-called gradient coil system (see figure 1.2). To understand
this noise production mechanism it is important to look at an MRI scanner’s construction.
A strong uniform magnetic field (0.1 − 1.5 T) is produced by the (superconducting) static
field magnet. On this field, a gradient magnetic field is dynamically superimposed which is
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figure 1.1 The MRI scanner in practice.

created by the so-called gradient coil magnets. The gradient coil support system consists
of a number of layers with composite materials, in which the copper gradient coil wires
are submerged. The coils are driven by a sequence of pulse-like currents of about 300 A
in magnitude and with a frequency content mainly in the range of 100 − 2000 Hz. Because
of this switching current in the strong static magnetic field, dynamic Lorentz forces are
generated in the gradient coils, which results in vibration of the coils’ support system [e.g.
Hurwitz et al., 1989; Kessels, 1999]. This vibration causes direct sound radiation at the
surface of the gradient coil system. Indirectly, acoustical energy is transported through the
coils’ supports to the remainder of the scanner and magnetically to the superconducting
magnet housing [Kooyman et al., 1993].

1m

static field magnet
gradient coil system
RF transceiver
patient support

figure 1.2 Schematic frontal and cross-sectional view of an MRI scanner.
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The noise problem in practice

Under normal operating conditions, an MRI scanner is located in a hospital’s radiology
department. The scanner is installed in a separate room (scanner room) and the MRI
scanner’s operator is normally in a room adjacent to the scanner room (operator room).
The operator maintains visual contact with the patient and the scanner through a window,
and auditive contact through an intercom system.

For a diagnostic session with the MRI scanner, the patient is placed inside the bore (i.e.
scanning section) of the scanner, after which the operator leaves the room and controls
the scanning process in the operator room. A diagnostic session takes, on average, about
30 minutes. Under these operating conditions, the acoustic load on patients is rather high,
as their position is very close to the noise source: the gradient coil system. It is therefore
common practice to use some kind of active or passive hearing protection for a patient
in the scanner to reduce the acoustic load on the ears [e.g. Goldman et al., 1989]. The
operator experiences substantially less noise than the patient, but is subject to these levels
much longer during a working day. However, ear protection is not necessary.

In the (near) future, it is expected that these operating conditions will change dramatically.
New techniques are being developed to enable the use of surgical intervention techniques
during the scanning process. These new developments require the presence of both the
scanner’s operator and a team of physicians and assistants inside the scanner room. In this
way, those people are also more frequently subject to high noise levels. A complicating
factor is the fact that surgical intervention techniques require fast scanning sequences,
which result in an even higher noise load. Because of these changing operating conditions,
it is insufficient to improve the acoustic treatment of the room and the hearing protection
of the patient. The acoustic problem should be handled at the source itself.

Research project background

Direct motivation of this research project stems from the cooperation between Philips
Medical Systems (PMS) and the TNO institute of Applied Physics. TNO performed a
number of acoustical investigations for PMS to reduce the noise problem. They found
that the major contribution to the total noise production of the MRI scanner is due to
the gradient coil system vibrations [Kooyman et al., 1993; Kooyman, 1994] and that any
attempt to achieve a substantial decrease of the noise production should focus first on
the contribution of the gradient coil system to the total sound production. But funda-
mental knowledge and practical tools were lacking to accurately model the vibrations and
acoustics of the gradient coil system. In a joint effort between PMS, the Dutch Technology
Foundation (STW) and the Eindhoven University of Technology (TUE), a research program
was started to develop the tools that were lacking. With these tools, the fundamental and
practical knowledge of the structural-acoustic behavior of the gradient coil system can
be obtained. Moreover, it was anticipated that these tools and knowledge for the MRI
design could also be deployed for the analysis and design of other complex axisymmetric
structures.

Problem description

Any structural-acoustic noise problem consists, as the name suggests, of two parts: a
structural part and an acoustic part. The structural part describes how a force excitation,
via the structural dynamics behavior of a system will induce vibrations. The acoustic part
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figure 1.3 Coupled structural-acoustic MRI noise problem.

describes how these vibrations result in audible noise. Often, these parts are integrated,
for instance if the generated acoustic pressure field excites the structure. For the MRI
scanner this would yield a model as depicted in figure 1.3. However, the mass and stiffness
of the gradient coil system prevent it from being excited significantly by the acoustic field.
Therefore, the structural and acoustic domains in the noise problem can be separately
solved (see figure 1.4). This thesis focuses on the acoustic part of the MRI noise problem,
in particular the acoustic radiation of the gradient coil system. This means that the vibra-
tions of the system are assumed to be known and the noise production is the quantity
of interest. In a companion doctoral thesis, Kessels [1999] covers the development of
structural dynamics tools and models for the MRI noise problem, and structural-acoustic
optimization techniques.

It is recognized that a substantial decrease of the noise production of the scanner can only
be achieved by explicitly incorporating studies of the acoustic behavior of the gradient coil
system into the design phase [e.g. Ling et al., 1995]. However, the acoustic analysis of an
MRI scanner is far from straightforward because of its large dimensions (typically outer
diameter 2 m) combined with the broad frequency band of excitation (100 − 2000 Hz).
Modeling such medium frequency problems with modern numerical acoustics tools [e.g.
Sysnoise, 1996] would require an enormous amount of computational effort. With today’s
computer power this would result in simulation times in the order of weeks, which is
infeasible in an industrial research and development environment. Moreover, one such
an analysis would not directly provide the engineers with enough insight to construct

Lorentz
force
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coil system displacement

surface
velocity

surrounding
air

acoustic
pressure

uncoupled acoustic system

uncoupled structural dynamics system
input system output

input system output

figure 1.4 Decoupled structural-acoustic MRI noise problem.
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a quieter MRI scanner. Likely, more analyses are required to gain some insight into the
influence of different design parameters on the sound production. This would augment
the computational costs even more.

1.2 Objective and strategy
The objective of this thesis is twofold. Firstly, it presents efficient computational methods
to analyze the acoustic radiation of (nearly) axisymmetric structures. These methods can
be used to predict the sound radiation of MRI scanners. Secondly, it considers the appli-
cation of these formulations and it presents a systematic approach of how to use these
models to analyze noise abatement measures in the design of MRI scanners.

The research strategy that is followed here to achieve the objective is first to develop
accurate and efficient models that mathematically describe the radiation characteristics of
the MRI scanner. Then, with these models, the typical radiation phenomena that occur
in (finite) ducts will be studied. The knowledge gained will then be used to assess the
importance of various modeling aspects that might influence the acoustic behavior of
the scanner. These assessment studies will demonstrate the capabilities of the developed
acoustic tools in the design process of the MRI scanner.

1.3 Acoustic modeling considerations
The development of an acoustic model for low-noise design of MRI scanners begins with
the choice of the mathematical method that is used to describe the acoustic response due
to mechanical vibrations. To be able to effectively use an acoustic model in a design envi-
ronment, the model should be usable for non-trivial geometries and boundary conditions,
its implementation should be efficient, and whenever possible, it should provide some in-
sight into the radiation characteristics of the structure. These model characteristics often
largely depend on the acoustic modeling and analysis method that is chosen.

Today, there exists a wide variety of acoustic modeling techniques that could be used
for the acoustic analysis of vibrating axisymmetric structures and it is impossible or even
undesirable to choose a single one of these methods and mark it as the best method to
analyze the radiation of the MRI scanner. It is however possible to sketch the consider-
ations that have lead to the choice of models that were used in this research. This is a
process of ‘wandering’ down a tree-like hierarchical structure of acoustic modeling tech-
niques (see figure 1.5) and at every node a comparison of methods can be made, weighing
their benefits and short-comings in the light of the acoustic design of MRI scanners.

As a first step to construct a hierarchy of acoustic methods, one can discriminate between
deterministic models (analytical or discretization methods) and stochastic methods (e.g.
statistical energy analysis). The deterministic models try to provide an exact local predic-
tion of the acoustic variables based on local input information. In contrast, the stochastic
methods try to relate noise production to global variables like energy flows in acoustic
systems, and are valid for ensembles of systems with similar but slightly varying properties.

A parameter that can be used to choose between these two modeling methods is the
Helmholtz number ka, with k = 2π f /c0 being the free field wavenumber, with frequency
f and sound speed c0, and with a as a characteristic dimension of the radiator. For low
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figure 1.5 A hierarchy of mathematical acoustic modeling techniques. The grey boxes represent
the modeling techniques that are treated in this thesis.

Helmholtz numbers, where distinct structural modes normally govern the structural dy-
namics, the deterministic methods can be used to give detailed information on the radia-
tion characteristics. For efficiency reasons and because of modeling uncertainties, stochas-
tic methods are used in the high Helmholtz number range. The location of the boundary
between these ranges is unclear and tends to increase with increasing computer hardware
power. However, applications of deterministic formulations are rarely seen above ka = 10.

The choice here for an analysis method to obtain an accurate and efficient acoustic model
for the MRI scanner is determined by the scanner’s geometry and the frequency range
of acoustic excitation. With a scanner inner radius of a = 0.35 m and an excitation
frequency range of 100 − 2000 Hz, this results in a Helmholtz number range of 0 − 13.
Because of the low Helmholtz numbers and relatively small modal overlap between the
structural modes, the use of stochastic methods like statistical energy analysis (SEA) is not
the obvious choice. On the other hand, the maximum Helmholtz numbers suggest that
deterministic methods will not be very computationally efficient to cover the complete
frequency band.

To improve the efficiency of the deterministic models, the radiating parts of the scanner
(i.e. the gradient coil system) and the MRI housing are assumed to be geometrically ax-
isymmetric, as a first approximation. However, traditional axisymmetric models cannot be
used because the force excitation and resulting vibrations of the scanner are essentially
non-axisymmetric. This study will show that this problem can be handled elegantly with
Fourier type models in which the circumferential dependency of the boundary conditions
are described with Fourier series. This essentially decomposes the 3-dimensional radia-
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tion problem into a series of ‘quasi-axisymmetric’ problems, each for a different Fourier
harmonic in the excitation. The Fourier approach can be applied to both analytical and
element based methods.

In the hierarchy of deterministic acoustic methods a choice must be made between analyt-
ical and element based formulations. An alternative to these formulations might be the re-
cently introduced generalized internal source density method [Stepanishen, 1997], which
was not studied here. Characteristic of the analytical models is that they are generally
to be preferred over discretization methods because they better uncover the important
radiation parameters of the acoustic model, yielding more physical insight. Besides that,
they are normally more efficient. However, analytical solutions are generally only available
for acoustic models with very simple geometries and boundary conditions. Therefore, for
non-trivial geometries and boundary conditions, element based discretization methods
like the boundary element method (BEM) or finite element method (FEM) are often the
only option. To model the external acoustic radiation of vibrating structures, the BEM is
to be preferred over FEM, because with the BEM, only the surface of the acoustic domain
has to be discretized and not the whole acoustic domain. Moreover, the causality princi-
ple, leading to boundary conditions at infinity, is automatically satisfied. Note that a novel
enhancement to the finite element method, referred to as the infinite element method or
wave envelope element method, alleviates some of these disadvantages and broadens the
application range of the finite element method.

For this thesis the Fourier approach has been chosen as a basis for both an analytical and
boundary element based analysis method, the former to increase insight, the latter to han-
dle more complex (realistic) MRI geometries. Furthermore, the efficacy of the boundary
element based method was enhanced by applying the so-called radiation modes formula-
tion. It will be shown that this formulation is helpful to acquire more understanding of the
important radiation parameters which is difficult to obtain from the boundary element
model alone. Also the radiation modes formulation will be shown to be usable as a model
reduction technique.

1.4 Outline
This thesis can be split up into two parts: a part which covers the acoustic formulations
for axisymmetric (duct-like) structures and a part which covers the application of these
formulations for the acoustic design of the MRI scanner.

Formulations

In chapter 2, the first chapter in the modeling part, a (semi-)analytical formulation is pre-
sented to model the acoustic radiation of baffled finite ducts with vibrating walls. This
formulation can be used to represent a rough approximation of an MRI scanner: it is ax-
isymmetric, the outer radius is assumed to be infinite and the radius of the MRI bore (the
scanning section) is constant. The resulting (semi-)analytical model offers understanding
of some important acoustic phenomena that are typical of finite duct-like structures.

In chapter 3, a Fourier Boundary Element Method (Fourier BEM) formulation is presented.
The Fourier BEM formulation is restricted to axisymmetric structures subject to general
(non-axisymmetric) boundary conditions. For these structures, this formulation has a sig-
nificantly better numerical efficiency than a 3-dimensional BEM formulation.
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Chapter 4 deals with the radiation modes formulation. This formulation offers a modal
approach for the analysis of exterior radiation characteristics of structures. It offers in-
sight into the strongly radiating components of a structure’s vibration field and also makes
acoustic model reduction possible. This model reduction technique can be applied, irre-
spective of the underlying acoustic modeling technique. It can be exploited to its fullest
extent in a design optimization environment.

Applications

Chapter 5 deals with some essential issues that need to be addressed before any of the
developed numerical formulations can be used for the acoustic design of the MRI scanner.
To quantify the noise production of the MRI scanner, an appropriate design objective
function is chosen. Also, the application of the developed acoustic tools in different stages
of the design process is illustrated.

In chapter 6, the versatile power of the developed numerical models is shown in some
preliminary design studies for the MRI scanner. The influence of some important aspects
of the acoustic MRI scanner model is addressed: the influence of the cut-on resonances,
the excitation, the geometry of the scanner’s casing, and the presence of a patient. The
use of the models in parameter or optimization studies is also shown.

Finally, in chapter 7, the research presented in this thesis is discussed and conclusions are
drawn upon the most important results. Also, recommendations are given on topics for
future research and development activities for the acoustic design of MRI scanners.



2 A semi-analytical model for the radiation of
baffled finite cylindrical ducts*

2.1 Introduction
An analytical model for the acoustic behavior of the MRI scanner and its gradient coil sys-
tem must incorporate two aspects: the specific geometry of the scanner and its complex
acoustic boundary conditions. As a first approximation, the geometry of the scanner can
be modeled as being axisymmetric. Secondly, the boundary conditions can be approxi-
mated by assuming that only the inner wall of the gradient coil system can vibrate and
thus radiate acoustic energy (see figure 1.2). But this is still too complex for an analytical
acoustic model for the MRI scanner. Further model reduction can be achieved if the MRI
scanner bore (central part with the gradient coil system) can be approximated as a fi-
nite cylindrical duct (constant cross-section) with infinite flanges. In this way, it is possible
to use duct acoustics theory which receives considerable attention in the basic acoustic
textbooks [Morse and Ingard, 1968; Skudrzyk, 1971; Pierce, 1981; Kinsler et al., 1982].
The theory presented in these books is, however, not sufficient to model the MRI scan-
ner; it generally only deals with (semi-)infinite ducts with rigid walls or the plane wave
approximation for the acoustic field inside the duct.

To the authors’ knowledge, no studies have been reported in the literature dealing with
the duct acoustics of a finite duct with vibrating walls. Models for the propagation and
diffraction of sound inside semi-infinite and finite ducts, have been reported [e.g. Morfey,
1969; Doak, 1973; Zorumski, 1973; Wang and Tszeng, 1984; Hewlett et al., 1995] but
they were mainly dealing with the radiation of (point) sources or propagation of sound
inside hard-walled ducts, not including vibrating walls. Studies in the literature of the sound
radiation of cylinders with vibrating walls [e.g. Sandman, 1976; Harari and Sandman, 1976;
Filippi and Habault, 1989; Habault and Filippi, 1989; Grosh et al., 1994; Choi et al., 1996] all
deal with external radiation. The results of these studies do not give a closed form solution
to the internal radiation problem under consideration. Nevertheless, these models were
useful as they provided the building blocks for an accurate and efficient acoustic model for
the MRI scanner based on duct acoustics that will be presented here.

The model for the radiation of sound inside a baffled finite duct with vibrating walls,
presented here, is an extension of the model presented by Doak [1973]. He modeled the
radiation of sound by a distribution of sources inside a finite-length hard-walled duct with
infinite flanges. This formulation was extended to handle vibrating walls inside the duct.
The impedance boundary conditions in the duct at the flanges are handled by so-called

* This chapter was partly reproduced from Kuijpers et al. [1998a]
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reflection coefficients [Zorumski, 1973]. In the model that will be presented here, which
was first outlined by Rienstra [cf. Kuijpers et al., 1998a], special attention was paid to the
computational efficiency of the model and therefore an alternative for the computation of
these reflection coefficients was developed and implemented. The coupling between the
reflection coefficients at the duct’s exits and the sound field created in and propagated
through the finite duct is expressed by two matrix equations that need to be solved
simultaneously or iteratively.

2.2 Acoustics of finite cylindrical ducts with planar baffles
The acoustic model for a finite duct with vibrating walls and infinite flanges will be de-
rived in this section. First, the general (infinite) duct acoustic theory, that is described in
many textbooks [e.g. Morse and Ingard, 1968; Skudrzyk, 1971; Pierce, 1981], will be re-
viewed briefly. Then, step by step new features are introduced into the model, eventually
leading to the desired model. First, a model will be derived that describes the acoustic
response of the duct system due to a monopole source inside the duct wall. Then, it will
be shown that the description of the acoustic field caused by the vibrating wall of the duct
is a generalization of the monopole source model. At the end, the duct acoustics model
incorporating wall vibration is coupled with a model for the reflection conditions for the
baffle at the finite duct’s exits. This results in a general model for the acoustics of finite
cylindrical ducts with planar baffles and vibrating walls.

2.2.1 Acoustic equations for cylindrical ducts

Consider the sound field in an infinite cylindrical duct with radius r = a. If only harmonic
solutions for the sound field are considered, the acoustic pressure p and velocity u in the
duct can be expressed as

p̃(r, θ , z, t) = Re
[
p(r, θ , z, ω)eiωt ]

, ũ(r, θ , z, t) = Re
[
u(r, θ , z, ω)eiωt ]

, (2.1)

with angular frequency ω. This pressure field has to satisfy the continuity, momentum and
state equations,

iωρ + ρ0∇ · u = 0, (2.2)

iρ0ωu + ∇p = 0, (2.3)

p = ρc2
0, (2.4)

with density ρ, speed of sound c, and the subscript 0 denoting the constant equilibrium
quantity. These equations can be combined into the Helmholtz equation,

∇2 p + k2 p = 0, (2.5)

with free field wavenumber k = ω/c0. The structure is also subject to a normal velocity
boundary condition at the duct wall,

u
∣∣
wall · n ≡ −ur

∣∣
r=a = η(θ, z), (2.6)

with n the inward surface normal, ur the radial component of u, η the imposed duct wall
velocity boundary condition, and the gradient and Laplace operators, respectively

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z
, ∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
.
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2.2.2 The acoustic field inside a hard-walled infinite duct

When the sound field in a hard-walled infinite duct (η = 0) is considered, the technique
of separation of variables can be used. A solution of the kind p = f (r)g(θ )h(z) is assumed
to satisfy the homogeneous Helmholtz equation (2.5). This solution exists if

∂2 f
∂r2

+ 1

r
∂ f
∂r

+ (α2 − m2

r2
) f = 0, (2.7a)

∂2g

∂θ2
+ m2g = 0, (2.7b)

∂2h

∂z2
+ (k2 − α2)h = 0, (2.7c)

so that f (r) = Jm (αmµr), µ = 1, 2, . . . , where Jm denotes the ordinary Bessel function of
the first kind and αmµ = j′mµ/a the radial wavenumber, where j′mµ is the µth nonnegative
non-trivial zero of J′m (see appendix A). This solution satisfies the boundary condition at
the duct wall: d f /dr|r=a = 0. The Bessel function of the second kind Ym is also a solution
of equation (2.7a), but does not satisfy the condition at r = 0 where the pressure and its
derivative should be finite. Also g(θ ) = e−imθ,m = . . . ,−2,−1, 0, 1, 2, . . . , where use
is made of the condition of continuity from θ = 2π to θ = 0. Finally, h(z) = e∓ikmµz,
where kmµ = √

(k2 − α2
mµ) is the axial wavenumber, the square root being chosen such

that Re(kmµ) ≥ 0 and Im(kmµ) ≤ 0. When at a certain free field wavenumber k, the axial
wavenumber kmµ is real, the function h(z) is an oscillatory function, and the correspond-
ing acoustic wave is called cut-on. If kmµ is imaginary, the function h(z) is exponentially
decaying (in its propagation direction) and the associated wave is called cut-off (see ap-
pendix A).

The modes

p±
mµ(r, θ , z) = Jm(αmµr)e−imθ∓ikmµz (2.8)

form a complete basis [Watson, 1966] for the acoustic field in the duct (with the + and −
superscript denoting a wave traveling in the positive or negative z-direction, respectively).
Any field in the duct can thus be written by the principle of superposition as the following
modal expansion:

p(r, θ , z) =
∞∑

m=−∞

∞∑
µ=1

Jm(αmµr)e−imθ (Amµe−ikmµz + Bmµeikmµ z), (2.9)

where the amplitudes Amµ and Bmµ of the individual modes are determined by the bound-
ary conditions. This modal expansion is the basis for general duct acoustics [e.g. Morse
and Ingard, 1968; Skudrzyk, 1971; Pierce, 1981]. The plane wave is a special form of this
general case with the m = 0, µ = 1 mode only. In the following sections this modal
expansion will be used to construct the acoustic field inside ducts with various boundary
conditions.

2.2.3 Radiation from a point source in the wall of an infinite duct

Consider the field generated inside a hard-walled duct by a volume point source with
strength Q at location xs = (r = rs, θ = θs, z = zs) defined by

iωρ + ρ0∇ · u = ρ0Qδ(x − xs), (2.10)
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figure 2.1 Acoustic source (•) at the wall of an infinite duct.

inside the duct (see figure 2.1). The source strength distribution is given by

Qδ(x − xs ) = Qδ(r − rs)δ(z − zs)
1

rs

∞∑
m=−∞

δ(θ − 2πm − θs). (2.11)

From causality arguments the generated field should radiate away from the source. A
Fourier transformation technique will now be applied to obtain a solution for the acoustic
pressure and velocity field that are generated by the point source. When the source is
located on the duct wall rs = a, θs = 0, zs = 0, it can be represented elegantly by the
(generalized Fourier transformed) boundary condition (2.6) at the duct wall:

ur
∣∣
r=a = 1

−iωρ0

∂p

∂r

∣∣∣∣
r=a

= −Q

a
δ(z)

∞∑
m=−∞

δ(θ − 2πm)

= −Q

a

1

2π

∞∫
−∞

e−iγ zdγ
1

2π

∞∑
m=−∞

e−imθ .

(2.12)

The solution of the wave equation (2.5) can be found by Fourier transformation in z and
Fourier series expansion in θ of the pressure:

p(r, θ , z) =
∞∫

−∞

∞∑
m=−∞

p̂m(r, γ )e−imθ−iγ zdγ , (2.13)

p̂m(r, γ ) = Am(γ )Jm (α(γ )r), (2.14)

α(γ )2 = k2 − γ 2 . (2.15)

Substituting the expression for the Fourier coefficients of the pressure equation (2.14) in
the general expression for the boundary condition (2.12) at r = a, it follows that

αAmJ′m(αa) = −ωρ0Q/a4π2i, (2.16)

p(r, θ , z) = −kρ0c0Q

4π2i

∞∑
m=−∞

e−imθ

∞∫
−∞

Jm(αr)

αaJ′m(αa)
e−iγ zdγ . (2.17)

The residue integration method [see e.g. Kreyszig, 1993,chap 15], is applied to compute
the integral in equation (2.17). To satisfy causality, the integration contour is indented
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above the poles γ = kmµ and below the poles γ = −kmµ, and the contour closed through
the lower half plane for positive z and through the negative half plane for negative z [see
e.g. appendix B.1; Morse and Ingard, 1968, p.17; Skudrzyk, 1971, p.652]. The solution can
be written as

p(r, θ , z) = ρ0c0

2π

∞∑
m=−∞

e−imθ
∞∑
µ=1

α2
mµa2

α2
mµa2 − m2

Jm(αmµr)
Jm(αmµa)

kQ
kmµa2

e−ikmµ |z|, (2.18)

of which the plane wave component is

p(r, θ , z) = ρ0c0

2π

Q

a2
e−ikmµ |z|.

This result is an expression for the acoustic impulse response of the infinite duct valid for
any non-resonant frequency (kmµ �= 0). In the source plane z = zs = 0, the series for p
is conditionally convergent. A series representation of the velocity u can be obtained by
using equation (2.3). But, when trying to compute the actual velocity distribution with this
series representation, one notes that the series is not convergent at all in the usual sense:
it has to be interpreted as a generalized function, as might be expected from the δ-type
source.

Next, it will be shown that the Fourier transformation method, that is used here to obtain
the pressure field that results from a point source on the duct wall, can also be used to
obtain an expression for the pressure inside a duct with vibrating walls.

2.2.4 Radiation from a finite part of the wall inside an infinite duct

If a finite part (between −L ≤ z ≤ L) of the wall (at r = a) inside an infinite duct is vibrating
and radiating sound (figure 2.2), the velocity at the wall can be described as

ur (a, θ , z) = −η(θ, z) for − L ≤ z ≤ L. (2.19)

For each frequency ω, the solution of this problem can be found with the Fourier trans-
formation method analogous to the method described for the simple source radiation.
Again, from causality, the field should be radiating outward in the region |z| > L . The
boundary condition at the duct wall can again be written as a Fourier sum:

ur(r = a, θ , z) = − 1

iωρ0

∂p

∂r

∣∣∣∣
r=a

= − 1

2π

∞∑
m=−∞

e−imθηm(z)

= − 1

4π2

∞∑
m=−∞

e−imθ

∞∫
−∞

η̂m(γ )e−iγ zdγ ,

(2.20)

where the Fourier coefficients η̂m(γ ) of the wall velocity ηm(θ, z) are defined by

η̂m(γ ) =
∞∫

−∞
eiγ z

2π∫
0

η(θ, z)eimθdθdz =
L∫

−L

2π∫
0

η(θ, z)eimθ+iγ zdθdz. (2.21)



14 Chapter 2

z-L L

a

T

T

-T

-T

➀ ➁

figure 2.2 Vibrating walls inside an infinite duct.

For the pressure in the duct, the modal expansion from equations (2.13) – (2.15) can again
be used here,

p(r, θ , z) =
∞∫

−∞

∞∑
m=−∞

p̂m(r, γ )e
−imθ−iγ zdγ ,

with

p̂m(r, γ ) = Am(γ )Jm (α(γ )r), α(γ )2 = k2 − γ 2 .

Substituting this expansion in equation (2.20) for the boundary condition at the duct wall
results in

αAmJ′m(αa) = −ωρ0η̂m/4π
2i, (2.22)

p(r, θ , z) = −kρ0c0a

4π2i

∞∑
m=−∞

e−imθ

∞∫
−∞

Jm(αr)

αaJ′m(αa)
η̂m(γ )e

−iγ zdγ

= −kρ0c0a
4π2i

∞∑
m=−∞

e−imθ

L∫
−L

∞∫
−∞

Jm(αr)
αaJ′m(αa)

e−iγ (z−z ′
)dγ ηm(z′)dz′.

(2.23)

Similar to the ‘source in the hard-walled duct’ case, the integral in this equation can be
computed with the residue integration method, because η̂m(γ ) is analytic everywhere
since it is defined as a finite integral. This results in

p(r, θ , z) = ρ0c0

2π

∞∑
m=−∞

e−imθ
∞∑
µ=1

α2
mµa2

α2
mµa2 − m2

Jm(αmµr)
Jm(αmµa)

k
kmµa

L∫
−L

ηm(z
′
)e−ikmµ |z−z ′|dz′

,

(2.24)

valid for any non-resonance frequency (kmµ �= 0). This result denotes the convolution of
the acoustic impulse response ,equation (2.18), and the circumferential Fourier coefficients
of the wall velocity ηm(z). A bit confusing may be the observation that the resulting series
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for the radial velocity ur ,

ur(r, θ , z) = i

2π

∞∑
m=−∞

e−imθ
∞∑
µ=1

α2
mµa2

α2
mµa2 − m2

J′m(αmµr)

Jm(αmµa)

αmµ

kmµa

L∫
−L

ηm(z′)e−ikmµ |z−z ′|dz′,

(2.25)

appears to be a sum of hard wall modes. Since every term in the radial velocity series
vanishes at the wall (because J′m(αmµa) = 0 by definition of αmµ), it might seem that the
series also vanishes at the wall, in contrast to the boundary condition! This is, however,
only point wise, because the series does not converge uniformly near r = a [see e.g.
Kreyszig, 1993,chap. 14]. In any neighborhood of r = a, the series behaves according to
the boundary condition. Furthermore, an order of magnitude estimate of the terms of the
series shows that the series for p converges absolutely, and for ur converges conditionally.

Next, it will be shown that the expression for the pressure in an infinite duct with partly
vibrating walls can be extended to incorporate the effect of infinite flanges as duct termi-
nations.

2.2.5 Radiation from a finite duct terminating in infinite flanges

The radiation from the walls of a finite duct terminating in rigid baffles (see figure 2.3)
is considerably more complex than the former three situations. This is caused by the
‘interface’ impedances at the duct’s exits. An acoustic wave that is incident to the plane
of termination of the duct in a rigid baffle is partly transmitted and partly reflected. The
reflection is rather complex because there generally is coupling between the radial modes
of the incident and reflected acoustic field. Zorumski [1973] has described a method
to compute the generalized radiation impedances and reflection coefficients of circular
ducts. This is needed to impose the boundary conditions for the sound radiation model
for baffled finite ducts. It will be shown that the model for the radiation of a vibrating
wall in an infinite duct can be combined with the reflection coefficients to impose the
boundary conditions at the duct’s exits.

Generalized radiation impedances

Consider the radiation of sound from a cylindrical duct terminating in planar baffles (in-
finite flanges). The pressure and axial velocity at the duct’s exits (z = ze = ±L, as in
figure 2.3) can be written as a complete sum of duct modes in radial r and circumferential
θ direction:

p(r, θ , ze) =
∞∑

m=−∞
e−imθ

∞∑
µ=1

PmµJm(αmµr), (2.26)

uz(r, θ , ze) = 1

ρ0c0

∞∑
m=−∞

e−imθ
∞∑
µ=1

VmµJm(αmµr), (2.27)

with modal coefficients Pmµ and Vmµ for the pressure and velocity, respectively. Zorumski
[1973] has shown that, for J′m(αmµa) = 0, these coefficients are coupled by so-called
generalized radiation impedances (see appendix B.2)

Pmµ =
∞∑
ν=1

ZmµνVmν, (2.28)



16 Chapter 2

z

L L

a

T T

-T -T

➁➀

figure 2.3 Vibrating walls inside a baffled finite duct.

where µ is the radial order of the incident mode, ν the radial order of the reflected mode,
and

Zmµν = 1

N2
mµ

∞∫
0

τ√
1 − τ 2

Dmµ(τ )Dmν(τ )dτ, (2.29)

N2
mµ = 1

2
(a2 − m2/α2

mµ)Jm(αmµa)2, (2.30)

Dmµ(τ ) = τk2a

α2
mµ − τ 2k2

J′m(τka)Jm (αmµa). (2.31)

Equation (2.28) shows that energy from a single incident radial mode is transferred into
all reflected (and transmitted) radial modes. Because of the oscillatory nature of the in-
tegrand in equation (2.29), the evaluation of this integral is not straightforward. This is
discussed in appendix B.3.

Accounting for planar baffles in a finite duct

The problem of a vibrating duct wall that radiates sound into a finite duct terminating in
planar baffles is an extension of the problem of a vibrating wall in an infinite duct. The
baffle interface acts as an additional generalized impedance in the duct, where incident
waves are partly transmitted and partly reflected. The total solution for the pressure has
to satisfy both the boundary conditions at the duct wall and at the interface at the duct’s
exits. Since the boundary conditions at the wall are similar for the finite and infinite duct
problems, it is convenient to use this solution (denoted as p′) and adding to this solution
a homogeneous solution, i.e., a general duct acoustic pressure field p′ ′ with vanishing
velocity at the wall. This is possible because the equations are linear.

The pressure in the finite duct can be written as

p(r, θ , z) = p′(r, θ , z) + p′′(r, θ , z), (2.32)
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with

p′
(r, θ , z) = ρ0c0

2π

∞∑
m=−∞

e−imθ
∞∑
µ=1

α2
mµa2

α2
mµa2 − m2

Jm(αmµr)
Jm(αmµa)

k
kmµa

L∫
−L

ηm(z
′
)e−ikmµ |z−z ′|dz′

,

(2.33)

p′′(r, θ , z) =
∞∑

m=−∞
e−imθ

∞∑
µ=1

Jm(αmµr)(A′′
mµe

−ikmµ z + B′′
mµeikmµ z), (2.34)

where (α2
mµa2)/(α2

mµa2 − m2) = 1 if m = 0, µ = 1. The total pressure p has to satisfy
the boundary condition

∂p
∂r

∣∣∣∣
r=a

= ∂

∂r
(p′ + p′ ′)

∣∣∣∣
r=a

= −iωρ0ur (r = a, θ , z). (2.35)

The pressure field p′ already satisfies this boundary condition as defined in equation (2.20)
thus for p′′ the following boundary condition must hold:

∂p′ ′

∂r

∣∣∣∣
r=a

= 0. (2.36)

At first glance, it might seem that this condition is easily satisfied because every term in
the series of ∂p′′/∂r equals zero, because they all contain the portion J′m(αmµr) which
equals zero for r = a. But the same holds for the series of p′ while for that series
∂p′/∂r �= 0, because the series does not converge uniformly. So, the fact that every
term in the series for ∂p′ ′/∂r equals zero, is not a sufficient condition to comply with
equation (2.36). Therefore, an additional condition for p′′ is necessary: the series sum for
∂p′ ′/∂r should converge uniformly (which is the case for example if the series consists of
a finite number of terms).

The uniform convergence condition for p′′ is essential for the subdivision of p, but appears
to be satisfied in practice. Hence, the sound field that is generated in the finite duct is a
superposition of the sound field generated by the vibrating walls in an infinite duct and
the homogeneous sound field satisfying the velocity boundary condition ur = 0 at r = a.
The modal coefficients A′′

mµ and B′′
mµ will be determined by the condition that the total

solution has to satisfy the reflection boundary conditions at the duct’s exits (z = ±L). The
total acoustic pressure can thus be written as

p(r, θ , z) =
∞∑

m=−∞

∞∑
µ=1

Jm(αmµr)e−imθ
(
Amµ(z)e−ikmµz + Bmµ(z)eikmµ z

)
, (2.37)

with

Amµ(z) = A′′
mµ + α2

mµa2

α2
mµa2 − m2

1

Jm(αmµa)
ρ0c0k

2πakmµ

z∫
−L

ηm(z′)eikmµ z ′
dz′, (2.38a)

Bmµ(z) = B′′
mµ + α2

mµa2

α2
mµa2 − m2

1

Jm(αmµa)

ρ0c0k

2πakmµ

L∫
z

ηm(z′)e−ikmµ z ′
dz′. (2.38b)
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At the interface, the generalized impedances defined in the previous section can be used
to obtain a relationship between the modal coefficients of the pressure and velocity at the
duct’s exits. The value of the pressure, velocity and their modal coefficients at interfaces
➀ and ➁ in figure 2.3 are identified by superscripts ➀ and ➁. At interface ➀, p′ can be
written as

p′(r, θ , z = −L) = p′➀ =
∞∑

m=−∞

∞∑
µ=1

Jm(αmµr)e−imθ(H➀
mµe−ikmµ L), (2.39)

with

H➀
mµ = α2

mµa2

α2
mµa2 − m2

1

Jm(αmµa)

ρ0c0k

2πakmµ

L∫
−L

ηm(z′)e−ikmµ z ′
dz′. (2.40)

Thus, the total pressure p at interface ➀ is given by

p(r, θ , z = −L) = p➀ =
∞∑

m=−∞

∞∑
µ=1

Jm(αmµr)e−imθ(A′′
mµeikmµ L + (H➀

mµ + B′′
mµ)e

−ikmµL ).

(2.41)

The axial velocity uz(r, θ , z) in the negative z-direction can be written as

uz(r, θ , z = −L) = u➀
z = 1

iωρ0

∂p

∂z

∣∣∣∣
z=−L

=
∞∑

m=−∞

∞∑
ν=1

Jm(αmνr)e−imθ kmν

ωρ0
(A′′

mνe
ikmν L − (H➀

mν + B′′
mν )e

−ikmν L ). (2.42)

The coefficients of the pressure and axial velocity at interface ➀ from equations (2.26)
and (2.27), respectively, can be written as

P➀
mµ = A′′

mµeikmµ L + (H➀
mµ + B′′

mµ)e
−ikmµ L

, (2.43)

V➀
mν = kmν

k
(−A′′

mνe
ikmν L + (H➀

mν + B′′
mν )e

−ikmν L). (2.44)

These expressions can be substituted into equation (2.28) (which is allowed because the
boundary conditions at the duct wall for p′ and p′′ both satisfy J′(αmµa) = 0, although the
series for ∂p′/∂r does not converge uniformly). This substitution gives

A′′
mµeikmµ L + (H➀

mµ + B′′
mµ)e

−ikmµ L =
∞∑
ν=1

Z➀
mµν

kmν

k
[(H➀

mν + B′′
mν )e

−ikmν L − A′′
mνe

ikmν L],

(2.45)

or

∞∑
ν=1

(Z➀
mµν

kmν

k
+ δµν )A′′

mνe
ikmν L =

∞∑
ν=1

(Z➀
mµν

kmν

k
− δµν )(H➀

mν + B′′
mν )e

−ikmν L. (2.46)
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Upon introducing the variable

Emν(z) = e−ikmν z, (2.47)

equation (2.46) can be written as

Emµ(−L)A′′
mµ =

∞∑
ν=1

R➀
mµνEmν(L)(B′′

mν + H➀
mν ), for

m = 0,±1,±2, . . . ,
µ = 1, 2, 3, . . . .

(2.48)

The terms R➀
mµν are the reflection coefficients that can be related to the modal impedance

Z➀
mµν by the following infinite matrix equation. For a given circumferential order m, the

reflection coefficient R➀
mµν is element (µ, ν) of reflection matrix R➀

m at interface ➀:

R➀
m = [Z➀

m Km + I]−1[Z➀
m Km − I], (2.49)

where I is the identity matrix, and Km is a diagonal matrix which is, for fixed circumferen-
tial order m, given by

Km =




km1/k 0 . . . 0 . . .

0 km2/k . . . 0 . . .
...

...
. . .

...
...

0 0 . . . kmν/k . . .

...
... . . .

...
. . .



. (2.50)

Because m is fixed, Km is only valid for one value of the circumferential order at a time,
and generally will be different for each value of m. Here, ν is the radial order of the
reflected modes, where 1 ≤ ν ≤ ∞. The (generally non-symmetric) matrix of reflection
coefficients is defined as

R➀
m =




R➀
m11 R➀

m12 . . . R➀
m1ν . . .

R➀
m21 R➀

m22 . . . R➀
m2ν . . .

...
...

. . .
...

...
R➀

mµ1 R➀
mµ2 . . . R➀

mµν . . .

...
... . . .

...
. . .



, (2.51)

where the impedance matrix is given by

Z➀
m =




Z➀
m11 Z➀

m12 . . . Z➀
m1ν . . .

Z➀
m21 Z➀

m22 . . . Z➀
m2ν . . .

...
...

. . .
...

...
Z➀

mµ1 Z➀
mµ2 . . . Z➀

mµν . . .

...
... . . .

...
. . .



. (2.52)

Expression (2.48) for the reflection at interface ➀ can be written as a matrix equation,

Em(−L)am = R➀
mEm(L)(bm + h➀

m ), (2.53)
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with

Em(z) =




e−ikm1 z 0 . . . 0 . . .

0 e−ikm2 z . . . 0 . . .

...
...

. . .
...

...
0 0 . . . e−ikmν z . . .

...
... . . .

...
. . .



, (2.54)

and

am = [
A′′

m1 A′′
m2 . . . A′′

mν . . .
]T
, (2.55)

bm = [
B′′

m1 B′′
m2 . . . B′′

mν . . .
]T
, (2.56)

h➀
m = [

H➀
m1 H➀

m2 . . . H➀
mν . . .

]T
. (2.57)

Similarly, at interface ➁ the matrix equation

Em(−L)bm = R➁
mEm(L)(am + h➁

m ), (2.58)

can be derived, with

R➁
m = [Z➁

m Km + I]−1[Z➁
mKm − I]. (2.59)

From equations (2.53) and (2.58) the still unknown coefficients A′′
mµ and B′′

mµ can be solved
according to the generalized impedance boundary conditions at both exits of the duct. In
the next section it will be shown how these infinite matrix equations can be implemented
in an acoustic tool.

2.3 Numerical implementation
The numerical implementation of the analytical formulation for the acoustic radiation
of baffled finite ducts with vibrating walls is not straightforward. The matrices in equa-
tions (2.53) and (2.58) are infinite in size and can therefore not be readily manipulated
numerically. In general, an approximate solution can be obtained by truncating the infinite
matrices a maximum ν = N, and a set of 2N equations with 2N unknowns (the elements
of am and bm) is obtained for every circumferential order m. When this system is solved,
an explicit (approximate) semi-analytical expression for p′′ is obtained and this leads to a
closed form solution for the total pressure,

p(r, θ , z) =
∞∑

m=−∞

N∑
µ=1

Jm(αmµr)e−imθ
(
Amµ(z)e−ikmµ z + Bmµ(z)eikmµ z

)
, (2.60)

with amplitudes Amµ(z) and Bmµ(z) as in equation (2.38). After truncation, two problems
remain to be solved: calculation of the integrals in equation (2.38) and solving the coupled
truncated matrix equations (2.53) and (2.58). The implementation details of a solution to
these problems will be presented next.
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2.3.1 Fourier integral calculation

In order to use the proposed formulation for the pressure in a (planar) baffled finite duct,
the convolution between the Fourier coefficients (with respect to the circumferential
direction) of the wall velocity ηm(z) and the function e−ikmµ |z| needs to be computed:

I =
L∫

−L

ηm(z′)e−ikmµ |z−z ′|dz′. (2.61)

This integral has to be computed for every circumferential mode m and every radial mode
µ. The integral can be split into the ranges [−L, z] and [z, L]. Then, the absolute value
operator in the exponential function can be removed:

I =
z∫

−L

ηm(z
′
)e−ikmµ(z−z ′ )dz′ +

L∫
z

ηm(z
′
)e−ikmµ(z ′ −z)dz′

. (2.62)

Since both integrals are bounded for all z, numerical integration is rather straightforward.
When kmµ is real, the duct wall normal velocity is multiplied with an oscillating function
yielding a oscillating integrand. Therefore, the trapezoidal rule or Romberg integration
should be used because these methods have a better convergence than Gauss-Legendre
integration for oscillating integrands. When kmµ is imaginary (and thus negative by defini-
tion), the normal velocity is multiplied with an exponentially decaying function, yielding an
exponentially decaying integrand. This type of integrand can also be integrated efficiently
with the trapezoidal rule or Romberg integration.

2.3.2 Matrix equation solution

After truncation of matrix equations (2.53) and (2.58), the coupled matrix equations

R➀E(L)(a + h➀) = E(−L)b, (2.63a)

R➁E(L)(b + h➁) = E(−L)a, (2.63b)

(where subscript m has been suppressed for clarity) need to be solved simultaneously to
obtain values for the amplitudes A′′

mµ and B′′
mµ, which are the elements of vectors a and b,

respectively. The main problem in obtaining this solution are the low condition numbers
of matrices R➀, R➁ and E(±L), so the solution of the system is not straightforward.

Since both ends of the duct are similar (but mirrored), the reflection behavior of the
sound waves is also similar. Therefore, the reflection matrices at both ends are the same:
R➀ = R➁ = R. Equations (2.63a) and (2.63b) are then summed up and r+ = a + b is
introduced, to obtain

[I − E(L)RE(L)] r+ = E(L)RE(L)
[
h➁ + h➀

]
. (2.64a)

Equation (2.63b) subtracted from equation (2.63a) and introducing r− = a − b yields

[I + E(L)RE(L)] r− = E(L)RE(L)
[
h➁ − h➀

]
. (2.64b)
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Both equations can now be solved separately for r+ and r− . The vectors a and b are
simply related to these vectors:

a = 1

2
(r+ + r− ) , (2.65a)

b = 1

2
(r+ − r− ) . (2.65b)

Using this solution strategy is advantageous over direct substitution of equation (2.63b) in
equation (2.63a), because in that case the matrix product E(L)2 is introduced which leads
to numerical underflow errors for large values of L.

The coupled matrix equations (2.63) can also be solved iteratively by using the recurrent
relationship

ai+1 = E(L)RE(L)
[
bi + h➀

]
, (2.66a)

bi+1 = E(L)RE(L)
[
ai + h➁

]
, (2.66b)

and starting the recursion with a0 = 0, b0 = 0. A good measure for the convergence of
the iteration is the relative difference in the sound power radiated out of the baffled duct
between two subsequent iterations,

P̄ = P̄z(L)− P̄z(−L), (2.67)

with P̄z(z) as the power flow in positive z-direction at a cross-section:

P̄z(z) =
∞∑

m=−∞

∞∑
µ=1

πN2
mµ

ρ0c0k
×

{
Re(kmµ)

[
|Amµ(z)|2 − |Bmµ(z)|2

]
+ 2 Im(kmµ) Im

[
A∗

mµ(z)Bmµ(z)
]}
. (2.68)

and with N2
mµ from equation (2.30) (see appendix B.4 for the derivation of the power

relations).

2.4 Summary and discussion
A semi-analytical model for the acoustic radiation of vibrating walls inside a baffled finite
duct was presented. The model originates from general duct acoustics theory. From this
general theory, a description of the acoustic radiation of point sources in infinite ducts
was derived. This solution represents the acoustic impulse response of the infinite duct.
It was shown that the radiation of a finite part of the wall of an infinite duct is merely a
convolution of the mentioned impulse response and the wall vibration distribution. To ac-
count for the planar baffles at the duct’s exits, so-called generalized radiation impedances
were used. To compute these impedances, a new algorithm was developed. The pressure
solution of the acoustic problem was shown to be a superposition of a particular solu-
tion to the wall vibration distribution and a homogeneous solution satisfying a rigid wall
boundary condition. With these, two matrix equations were formulated, one for each
side of the duct, which constitute a closed form solution for the acoustic radiation of the
wall inside a finite baffled duct.
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The mathematical formulation of the semi-analytical model that is presented here offers
direct physical insight into the acoustics of baffled finite ducts. For example, the relation-
ship between duct radius a and the axial wavenumber kmµ reveals that cut-on phenomena,
which are well-known from the general duct acoustics, also play a role in these baffled fi-
nite ducts with vibrating walls. Furthermore, the subdivision of p in a particular solution p′

and a homogeneous solution p′′, see equation (2.32) and following, reveals that the former
solution results directly from the wall vibration, while the latter is due to the reflection
of duct modes by the generalized impedance boundary condition at the duct’s exits. The
convolution integral indicates that a certain duct mode will only be excited directly at a
particular frequency if the wave content of the excitation matches the axial wavenumber
of that particular duct mode. By examining the values of the reflection coefficients for
the duct modes, one can easily determine for each duct mode, what part of the mode is
transmitted outside the duct, and what part is reflected back into the duct. In brief, the
semi-analytical model presented here establishes various important radiation characteris-
tics of baffled finite ducts that can hardly be obtained by discretization methods like the
finite element method or the boundary element method.

The formulation that was presented here was implemented in the acoustic code bArd
[1998]. The application of this model for the acoustic design of MRI scanners will be
shown in chapters 5 and 6.



24 Chapter 2



3 An improved Fourier boundary element
method for the radiation of axisymmetric
structures*

3.1 Introduction
The two most commonly used discretization methods in acoustics are the acoustic finite
element method (FEM) and the acoustic boundary element method (BEM). The FEM is
often used for interior radiation problems because it is more efficient than BEM for those
problems. For exterior radiation problems the BEM is preferred because then only the
bounds of the acoustic domain have to be discretized (and not the domain itself as for
the FEM) and also the Sommerfeld radiation condition (or causality condition) at infin-
ity is automatically satisfied [Ciskowski and Brebbia, 1991]. So-called wave-envelope ele-
ments [Astley and Eversman, 1988; Cremers et al., 1994; Astley et al., 1998] remove some
of the disadvantages of the FEM for exterior radiation problems, but their application is
not yet widespread.

A major drawback of the BEM is its numerically less attractive implementation which re-
quires assembling and solving full, complex, non-symmetric system matrices. This seriously
hampers the numerical efficiency of the BEM. However, for axisymmetric structures like
the MRI scanner, the efficiency of the BEM can be improved significantly with the Fourier
BEM method as will be explained next.

Conceptually, the acoustic Fourier boundary element method (Fourier BEM) applies a
Fourier series expansion in the angular coordinate of the acoustic variables in the prob-
lem. As a result, the surface integral in the boundary integral equations reduces to a line
integral and an integral over the angle of revolution (circumferential integral). The advan-
tages of this approach are evident. Discretization of the body requires only meshing of
the generator of the body with line elements. Also, the computational effort for solving
the system of equations is reduced because of a substantial decrease in the number of
unknowns.

Traditionally, the computation time required for an acoustic analysis with the Fourier BEM
is linearly dependent on the number of Fourier harmonics in the boundary conditions
because a complete BEM calculation has to be done for every Fourier harmonic that is
present in the boundary conditions. For complex boundary conditions with a lot of har-
monics, this seriously deteriorates the better performance of the Fourier BEM compared
to 3-dimensional BEM calculations. In the improved Fourier BEM formulation that will be

* This chapter was partly reproduced from Kuijpers et al. [1997]
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presented here, this problem is tackled by performing the most time-consuming integra-
tions in the Fourier BEM formulation simultaneously, by deploying efficient fast Fourier
transform algorithms.

3.2 Acoustic Fourier boundary integral equations
Consider a simple axisymmetric body B (see figure 3.1). When harmonic solutions for the
sound field with angular frequency are considered, the acoustic pressure p and velocity u
can be expressed as

p̃(r, θ , z, t) = Re
[
p(r, θ , z, ω)eiωt ] , ũ(r, θ , z, t) = Re

[
u(r, θ , z, ω)eiωt] . (3.1)

The harmonic acoustic pressure satisfies the homogeneous Helmholtz equation (see equa-
tion (2.5)):

∇2 p(y) + k2 p(y) = 0, (3.2)

with harmonic pressure p(y) at a point y, free field wavenumber k = ω/c0, speed of sound
c0, and where the gradient operator ∇ is applied with respect to point y, throughout
this chapter. Additionally, the Green’s function G(x, y) is introduced, which by definition
satisfies the inhomogeneous Helmholtz equation

∇2G(x, y)+ k2G(x, y) = −Qδ(x − y), (3.3)

with a unit point source at y = x. For a 3-dimensional infinite domain, the Green’s function
is given by

G(x, y) = e−ikR(x,y)

4πR(x, y)
, (3.4)

with the distance R between the points x and y being defined as R(x, y) = |x − y|. Now
equation (3.2) is multiplied by G(x, y) and subtracted from equation (3.3) multiplied by
p(y). The resulting equation is then integrated over the acoustic volume V which yields∫

V

(
p(y)∇2G(x, y)− G(x, y)∇2 p(y)

)
dV (y) = −

∫
V

p(y)δ(x − y)dV (y). (3.5)

When both Green’s theorem∫
V

(
�∇2�−�∇2�

)
dV = −

∫
S

(�∇�− �∇�) · n dS (3.6)

with inward surface normal vector n, and the sampling property of the δ-function,∫
f (x)δ(x − x0)dx = f (x0 ), (3.7)

are applied to equation (3.5), the Kirchhoff-Helmholtz integral equation for the acoustic
pressure p(x) at an observer point x is obtained,

C(x) · p(x) =
∫
S

[p(y)∇G(x, y) · n(y)− G(x, y)∇p(y) · n(y)] dS(y), (3.8)
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figure 3.1 Simple axisymmetric body B.

or with help of the momentum equation, iρ0ωu + ∇p = 0,

C(x) · p(x) =
∫
S

[p(y)∇G(x, y) · n(y)+ ikρ0c0G(x, y)v(y)] dS(y), (3.9)

with surface normal velocity v = u · n, acoustic fluid density ρ0, and C(x) as a coefficient
depending on the position of x [Ciskowski and Brebbia, 1991]:

C(x) =




0, for x outside the acoustic medium V ,

1, for x inside the acoustic medium V ,
1
2 , for x on the smooth surface S of the acoustic medium.

(3.10)

For any other position of x on S for which there is no unique surface normal, for example
when x is on an edge or a corner, the value of C(x) is given by

C(x) =




1 + 1

4π

∫
S

∇ 1

R(x, y)
· n(y) dS(y), for the exterior acoustic problem,

− 1

4π

∫
S

∇ 1

R(x, y)
· n(y) dS(y), for the interior acoustic problem.

(3.11)

The geometry of an axisymmetric body with arbitrary boundary conditions can be de-
scribed using a cylindrical coordinate system (r, θ , z). All variables then become functions
of the cylindrical coordinates r, θ , and z, i.e.,

p(x) = p(rx, θx, zx ),

p(y) = p(ry , θy, zy ),

G(x, y) = G(rx, θx, zx; ry, θy, zy ),

dS(y) = ry dθy dLy,



28 Chapter 3

with (rx, θx, zx ) and (ry, θy, zy ) as the coordinates of the observer point x and the surface
point y, respectively, and dLy as the differential length of the generator L of the body at y.
Because of the axisymmetric properties of the body B the variables can be expanded in
Fourier series. This Fourier series can be written with the complex exponential notation,
but here it is chosen to follow the derivation of Soenarko [1993], who used

p(y) =
∞∑

m=0

[
ps

m sin(mθy )+ pc
m cos(mθy )

]
, (3.12)

po(x) =
∞∑

m=0

[
ps

m
o sin(nθx )+ pc

m
o cos(mθx )

]
, (3.13)

with superscript o to discern the Fourier coefficients for the surface point y and observer
point x. Note that the Fourier coefficients still depend on the coordinates r and z, but
the dependence of pressure p on coordinate θ is expressed through the sine and cosine
terms of the Fourier expansion. The other functions of equation (3.9) can be expanded
likewise:

G(x, y) =
∞∑

m=0

[
Gs

m sin(mθy )+ Gc
m cos(mθy)

]
, (3.14)

v(y) =
∞∑

m=0

[
vs

m sin(mθy )+ vc
m cos(mθy )

]
, (3.15)

∇G(x, y) · n ≡ G′(x, y) =
∞∑

m=0

[
G′s

m sin(mθy)+ G′c
m cos(mθy)

]
. (3.16)

The Fourier coefficients in these equations are independent of θy but still dependent on
the ry and zy . Observe that the Fourier coefficients of the expansions of the Green’s
function and its normal derivative (i.e., Gs

m, Gc
m, G′s

m, and G′ c
m) are also dependent on all

the cylindrical coordinates of point x: rx, θx, and zx.

With the Fourier series description for the circumferential dependence of the acoustic
variables, a modified form of the Kirchhoff-Helmholtz integral equation can be obtained.
To that end, it is convenient to reformulate the Fourier coefficients of the Green’s function
and its derivative. The coefficients are determined by the standard Fourier transformation
rules, for instance,

Gs
m = 1

π

2π∫
0

e−ikR(x,y)

4πR(x, y)
sin(mθy ) dθy, m = 0, 1, 2, . . . (3.17)

For brevity, the addition m = 0, 1, 2, . . . will be omitted further. By defining θ ≡ θy − θx

such that dθ = dθy equation (3.17) can be written as

Gs
m = 1

π

2π∫
0

e−ikR(x,y)

4πR(x, y)
sin(m(θ + θx )) dθ, (3.18)
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With the aid of a trigonometric identity, equation (3.18) can be rewritten as

Gs
m = 1

π

2π∫
0

e−ikR(x,y)

4πR(x, y)
sin(mθ ) cos(mθx ) dθ + 1

π

2π∫
0

e−ikR(x,y)

4πR(x, y)
cos(mθ ) sin(mθx) dθ .

(3.19)

Because sin(mθ ) is an odd function of θ = π and the remainder of the integrand is
symmetric around θ = π in the interval [0, 2π], the first integral of equation (3.19)
vanishes. Introducing

Hm =
2π∫
0

e−ikR(x,y)

4πR(x, y)
cos(mθ )dθ, (3.20)

equation (3.19) becomes

Gs
m = 1

π
Hm sin(mθx ). (3.21)

The cosine coefficients Gc
m of equation (3.14) can be derived in a similar manner:

Gc
m = 1

π
Hm cos(mθx ). (3.22)

The Fourier coefficients of equation (3.16) can also be determined analogously. Using

H′
m =

2π∫
0

∇
(

e−ikR(x,y)

4πR(x, y)

)
· n cos(mθ ) dθ, (3.23)

they can be written as

G′s
m = 1

π
H′

m sin(mθx), G′c
m = 1

π
H′

m cos(mθx ). (3.24)

The Fourier coefficients in equations (3.12), (3.13), and (3.15) can be expressed similarly,
for instance,

ps
m(y) = 1

π

2π∫
0

p(y) sin(mθy ) dθy, (3.25)

and similar expressions for pc
m(y), ps

m
o(x), pc

m
o(x), vs

m(y), and vc
m(y). By expanding all

variables in Fourier series, equation (3.9) takes the form (where the index in some of the
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summations is taken n for clarity)

C(x)

{ ∞∑
m=0

[
ps

m
o sin(mθx )+ pc

m
o cos(mθx)

]}

=
∫
L

2π∫
0

{ ∞∑
n=0

[
ps

n sin(nθy )+ pc
n cos(nθy )

]}×
{ ∞∑

m=0

1

π
H′

m[sin(mθx ) sin(mθy )+ cos(mθx ) cos(mθy)]

}
ry dθy dLy

+ ikρ0c0

∫
L

2π∫
0

{ ∞∑
n=0

[
vs

n sin(nθy )+ vc
n cos(nθy )

]}×
{ ∞∑

m=0

1

π
Hm[sin(mθx ) sin(mθy )+ cos(mθx ) cos(mθy)]

}
ry dθy dLy.

(3.26)

Matching the terms on the left- and right-hand sides of equation (3.26) and using the
orthogonality properties for integrals involving sin(mθy ) sin(nθy ), sin(mθy ) cos(nθy ), and
cos(mθy) cos(nθy ), the following expressions can be obtained after integration over dθy :

C(x)ps
m

o(x) =
∫
L

[
ps

mH′
m + ikρ0c0vs

mHm

]
ry dLy, (3.27)

C(x)pc
m

o(x) =
∫
L

[
pc

mH′
m + ikρ0c0vc

mHm

]
ry dLy. (3.28)

All functions in equations (3.27) and (3.28) are no longer explicitly dependent on angle
θ , but still depend on the coordinates along L. When the Fourier coefficients of surface
pressure ps

m, pc
m and its normal derivative p′ s

m, p′ c
m are known, the acoustic pressure at any

observer point x inside, outside or on body B can be expressed as (see equation (3.13))

C(x)po(x) =
∫
L

∞∑
m=0

{[
ps

mH′
m + ikρ0c0vs

mHm

]
sin(mθx )

+ [
pc

mH′
m + ikρ0c0vc

mHm

]
cos(mθx )

}
rydLy. (3.29)

When observer point x is on the surface of body B, equations (3.27) and (3.28) can be
rewritten as

C(x)ps
m(x) =

∫
L

[
ps

mH′
m + ikρ0c0vs

mHm
]
ry dLy, (3.30)

C(x)pc
m(x) =

∫
L

[
pc

mH′
m + ikρ0c0vc

mHm
]
ry dLy (3.31)

(where the superscript o has disappeared). These modified Kirchhoff-Helmholtz integral
equations constitute an implicit formulation for the surface pressure and its normal deriva-
tive. It can be used to determine the boundary values of p when v is known and vice versa.
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3.3 Implementation of acoustic Fourier BEM
The solution of the Kirchhoff-Helmholtz equation for axisymmetric structures, given in
equation (3.29), can be obtained numerically by solving equations (3.30) and (3.31) using
standard boundary element procedures. The generator L of the axisymmetric body is
discretized and the geometry and acoustic variables p and v are assumed to vary according
to isoparametric shape functions on the surface of the body. The discretization of the body
involves only line elements.

In this acoustic Fourier BEM formulation, two issues are very important: the evaluation
of the integrals (3.11), (3.20), and (3.23) over the angular coordinate θ , and the non-
uniqueness problem. For acoustic Fourier BEM, these issues have received considerable
attention in the literature the past decade [Akyol, 1986; Soenarko, 1993; Juhl, 1993; Wang
et al., 1997; Kuijpers et al., 1997].

3.3.1 Circumferential integral evaluation

The computation of the circumferential integrals (3.11), (3.20), and (3.23) causes consid-
erable numerical problems in implementation of the Fourier BEM. The integrand of these
integrals can be singular and oscillatory. Numerical values for these integrals were ob-
tained using trapezoidal rule quadrature by Akyol [1986]. This method provided accurate
results, but it was pointed out that the efficiency of the integral computation needed fur-
ther investigation. A different method for the computation of the integrals was proposed
by Soenarko [1993] and Juhl [1993] and employed by Wang et al. [1997], who refor-
mulated the integrand and employed a series of elliptic integrals for the singular part of
the integral and Gaussian quadrature for the regular part. Matviyenko [1995] proposed a
recurrence relation for these integrals and unfoundedly claimed its superior efficiency.

The possible singularities in the circumferential integrands of equations (3.20) and (3.23)
are not the only difficulties in their computation. The cosine function in the expressions
for Hm and H′

m causes the total integrand to oscillate rapidly for high Fourier harmonic
numbers n. Moreover, the R(x, y)−1 function in these integrals causes a steep slope of the
integrand near θ = 0 and θ = 2π , when the distance between x and y is relatively small.
Therefore, special attention should be paid to the evaluation of these integrals.

Calculation of the circumferential integrals consumes a major portion of the total amount
of computation time that is required for an acoustic analysis with the Fourier BEM. The in-
tegrals need to be computed often, and the calculation itself is computationally expensive.
In general, the line integrals from equations (3.30) or (3.31) need to be computed numer-
ically for each Fourier harmonic m, for a number of observer points x. This requires a
value for Hm and H′

m and thus two circumferential integral evaluations on each integration
point of the line integral, for each Fourier harmonic number m. In addition, applying fixed
point numerical integration for the (regular part of the) Fourier integrals, like Gaussian
or trapezoidal rule quadrature, requires a large number of integration points in circum-
ferential direction to obtain sufficiently accurate results [Akyol, 1986]. This is particularly
true for a high Fourier harmonic number m, where the integrand evinces an oscillatory
behavior. The long computation times resulting from the application of fixed point integra-
tion schemes, as proposed by Akyol [1986], Soenarko [1993], and Juhl [1993], weaken the
advantages of the Fourier BEM compared to the 3-dimensional BEM. Kuijpers et al. [1997]
showed that an integral evaluation based on Fast Fourier Transform (FFT) is numerically
more attractive when multiple Fourier harmonics are present in the boundary conditions.
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Implementation of an integration algorithm based on fast Fourier transform

For a sufficiently accurate and efficient evaluation of the integrals (3.20) and (3.23) for Hm

and H′
m, respectively, a new method based on fast Fourier transform (FFT) was developed.

The integrands in the expressions for Hm and H′
m consist of a reasonable smooth (but

possibly singular) function multiplied by a cosine function. The integrand without the co-
sine function is an even periodic function around θ = 0 with a period equal to 2π . Given
an even periodic function h(x) with period 2T , the Fourier coefficients Hm of this function
are given by [Kreyszig, 1993]

Hm = 1

T

T∫
−T

h(x) cos
(mπ

T
x
)

dx = 1

T

2T∫
0

h(x) cos
(mπ

T
x
)

dx. (3.32)

With x ≡ θ and T = π , this shows that equations (3.20) and (3.23) are valid expressions
of the Fourier coefficients Hm and H′

m of the complex even functions (for fixed rx, zx,
ry,and zy)

h(θ ) = e−ikR(θ )

4R(θ )
(3.33)

and

h′
(θ ) = ∇

(
e−ikR(θ )

4R(θ )

)
· n, (3.34)

respectively, which are in fact slightly modified forms of the 3-dimensional free-space
Green’s function from equation (3.4) and its normal derivative. Hence, to compute the
integrals in the expressions for Hm and H′

m, the mth Fourier coefficient of the complex
functions h and h′, respectively, can be used.

In numerical mathematics, the algorithm normally used for an efficient computation of the
Fourier coefficients of a (complex) function is fast Fourier transform (FFT). FFT algorithms
are optimized for speed while their accuracy is unaffected. Therefore, they are a good
alternative for computing the integrals Hm and H′

m, but generally they are more expensive
than most fixed point numerical integration routines. However, a significant advantage
of the proposed method is that by one FFT, the Fourier coefficients of many Fourier
harmonics are calculated, whereas the fixed point integration methods required an integral
evaluation for every Fourier harmonic number m.

An algorithm for the evaluation of the integrals in equations (3.20) and (3.23) using FFT
requires the following actions:
1. Determination of the number of samples nFFT needed for computation of integrals Hm

and H′
m with a desired accuracy.

2. Evaluation of the functions h, equation (3.33), and h′, equation (3.34), on nFFT equidis-
tant values of the parameter θ in the interval [0, 2π].

3. Fast Fourier transformation of the nFFT computed function values.

4. Selection of the mth terms of the calculated Fourier spectrums which are numerical
values for the integrals Hm and H′

m.
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Numerical problems can occur when x coincides with y because the functions h and h′

cannot be evaluated due to the R−1 singularity in equations (3.33) and (3.34). This problem
can be circumvented by taking surface integration points y that do not coincide with
the observer point x when the line integrals (3.30) and (3.31) are computed. Gauss–log
integration [Lean and Wexler, 1985] should then be applied for the line integrals because
the functions h and h′ have logarithmic behavior near the singularity.

Other methods proposed in the literature to handle a singular integrand use a technique
of subtracting and adding up the singular part of the integrand from the regular part,
resulting in a regular and singular (surface) integral. Then, special (analytical) integration
techniques [Guiggiani and Casalini, 1987; Liao and Xu, 1992] are used for the singular
integral, and ordinary (Gauss–Legendre) integration techniques are used for the regular
part. To apply this technique here, a special integration technique should be developed
for the integral over a ring-shaped surface which contains the R−1 singularity. The inte-
gration region can be split up in an integral over the circumference and an integral over
a generator segment of the vibrating body. The circumferential integral yields elliptic in-
tegrals of the first and second kind [Soenarko, 1993], but an analytical solution for the
integration of these elliptic integrals over the generator segment is not available. There-
fore, this regularization method cannot be used here. It should however be noted that
this is not a consequence of the proposed FFT method but a general result for all Fourier
BEM implementations.

The application of the method of computing the circumferential integrals using FFT tech-
niques is not limited to acoustic problems governed by the Helmholtz equation. In like
manner, the new method is usable in non-acoustic Fourier BEM applications. The only
condition to be fulfilled for the kernel is that it has to be a periodic function of θ .

Efficiency of the FFT method

Regarding efficiency, it is preferable that the number of evaluations of the functions h(θ )
and h′(θ ) can be chosen as low as possible, because this number is directly related to the
cost of the FFT algorithm in particular and the cost of the total method in general. The
number of required evaluations of these functions is determined by the desired accuracy
of the FFT process. Signal leakage and aliasing in the Fourier transform process should be
taken into account. This means that precisely an integer number of periods of the periodic
functions h(θ ) and h′(θ ) should be sampled, and that the sampling frequency should at
least be twice the highest frequency present in the functions. The first requirement is
easily met because the period of the functions h(θ ) and h′(θ ) is known to be exactly
2π for axisymmetric structures. To satisfy the requirements for aliasing, however, the
frequency content of functions h(θ ) and h′(θ ) needs to be predicted because it is not
known beforehand. This is the topic of the remaining part of this section. For numerical
efficiency it is desirable that the number of Fourier transform points can be written as 2 f

with f as a positive integer number.

A closer look at the functions h and h′ that are Fourier transformed is illustrative to
establish a reasonable expression for the minimum number of Fourier transform points
nFFT required for each integral evaluation. A representative picture of the function h is
plotted in figure 3.2.

The steepness of the curve close to θ = 0 and θ = 2π is determined by the ratio of the
minimum and maximum R (distance between the points x and y), because of the factor
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figure 3.2 Function h for x = (1, 0, 0), y = (1, 0, 0.1) and k = 10.

R−1 in equation (3.33) for h. The ratio Rmax/Rmin can serve as a dimensionless scale factor
for the problem’s geometry. The rapid change in steepness of the curve for large values
of this ratio causes nonzero high harmonic number components in the Fourier transform
of the function h. Therefore, a sufficiently high number of Fourier points has to be used.
Hence, a criterion for the minimum number of Fourier points needed should be a function
of a steepness parameter:

cs = Rmax/Rmin. (3.35)

The oscillations in the curves for the real and imaginary part are caused by the term
e−ikR(θ ) = cos(kR) − i sin(kR) for large numbers of k and/or a large difference between
the minimum and maximum value for R. Thus, the criterion for the minimum number of
Fourier points should also be a function of an oscillation parameter:

co = k(Rmax − Rmin). (3.36)

Similar considerations can be made for the Fourier transform of h′, leading to identical
parameters cs and co.

An expression for the minimum number of Fourier points is dependent on the character-
istics of the integrands h and h′ which can be described by the parameters cs and co. So an
expression for nFFT can be expressed as a function of those parameters:

nFFT = nFFT(cs, co) = nFFT(Rmax, Rmin, k) = nFFT(x, y, k). (3.37)

For an efficient application of the FFT method, an expression for nFFT can be developed for
a desired accuracy. The expression that can be derived is generally applicable for efficiently
computing integrals in equations (3.20) and (3.23) with FFT integration. For efficiency, it
is also important to obtain a relatively simple expression nFFT, because it must be used
for each FFT based integral evaluation separately. Fortunately, a simple expression can be
derived for practical application, as is illustrated next.

For the FFT method, an expression for the minimum number of Fourier points nFFT was
developed. For a large number of parameter values cs in the range [1, 2000] and co in the
range [0, 100], the integrals (3.20) and (3.23) were computed with the proposed method
until convergence was achieved. Each parameter pair cs and co has a specific minimum
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(b) Cylinder radiation.

figure 3.3 Scaled computation times for Fourier BEM calculations, with increasing number of har-
monics nh in the boundary conditions, computed with different integration algorithms in circumfer-
ential direction (derived from Kuijpers et al. [1997]). : Gauss integration; : FFT integra-
tion.

number of Fourier points nFFT for the integrals to converge where the relative error in the
computed value for the integrals did not exceed 10−3. These pairs of cs, co and related
nFFT were then used in a curve-fitting procedure to obtain the relationship

nFFT(cs, co) = 14
(

cs + co

2π

)0.9

.

In the BEM code the expression for nFFT was implemented and its value is computed for
each circumferential integral evaluation separately based on values for cs and co for that
integral. Its value is rounded to the nearest subsequent power of 2, to enable the use of
a fast radix-2 FFT algorithm. In Kuijpers et al. [1997], it is shown that this method was in
general more efficient than ‘traditional’ Gauss-Legendre integral evaluation for problems
with more than one Fourier harmonic: For Gauss-Legendre integration the characteristic
total CPU time is the computation time per harmonic multiplied by the number of har-
monics, while for the FFT base algorithm the total CPU time is the (somewhat larger)
computation time for one harmonic (see figure 3.3). For comparison, similar calculations
with a 3-dimensional BEM code [Sysnoise, 1996] would yield a computation time which is
at least 50 times larger, but is independent of the number of harmonics.

3.3.2 Handling the non-uniqueness problem

Besides the integral evaluations, another important issue in the implementation of a BEM
formulation is the non-uniqueness problem. The non-uniqueness problem is the well-
known failure of certain integral equations, when applied to exterior radiation problems,
to yield a unique solution at certain characteristic (eigen)frequencies of the interior acous-
tic problem. Schenck [1968] proposed a method to remove this problem by adding some
additional Kirchhoff-Helmholtz equations that are evaluated in the interior domain. This
method, known as the CHIEF (Combined Helmholtz Integral Equation Formulation) leads
to an overdetermined system of equations for the surface pressures. A potential problem
with the CHIEF method is the choice of the location of the points in the interior domain
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for the additional equations. For the method to be effective, it is important for the interior
points, not to be on a nodal surface of the interior eigenmode. However, in practice this
seldomly proves to be a problem [Seybert and Rengarajan, 1987; Benthien and Schenck,
1997].

Another method to remove the non-uniqueness problem is the so-called Burton-Miller
approach. Burton and Miller [1971] introduced an acoustic integral equation that was
valid for all wavenumbers by forming a linear combination of the Kirchhoff-Helmholtz
integral equation and its normal derivative. A major problem with this formulation is the
occurrence of hypersingular integrals in the formulation which have to be treated with
special integration algorithms. It should be noted that with this approach the number of
system matrices for the discretization is doubled. Akyol [1986] and Wang et al. [1997]
have successfully implemented Fourier BEM formulations with this approach.

In the Fourier BEM method that is presented here, the CHIEF method was chosen for
two reasons. Firstly, the implementation of the method is trivial compared to the im-
plementation of the Burton-Miller approach. Secondly, and more important, the CHIEF
method is numerically much more efficient than the Burton-Miller approach. The Burton-
Miller approach requires assembling twice as much complete system matrices, and since
the assembly time is critical in most BEM formulations this will in practice double the
computational effort. Using the CHIEF method means that a few more system equations
are added and that a least-squares solution of the overdetermined system of equations
should be computed. This augments the computation times for the normal Fourier BEM
formulation only minimally.

3.3.3 Discretization process

The boundary element method is applied for the discretization of the modified Kirchhoff-
Helmholtz integral equations (3.30) and (3.31) as follows. Assume that the generator L
of body B can be discretized with ne line elements and that each line element ie has nn

nodes. The total number of nodes is denoted as nnd. Thus the coordinates r and z can
be expressed in terms of the coordinates rin and zin of element node in using a piecewise
polynomial approximation:

r(ξ ) =
nn∑

in=1

φ
nn
in (ξ )rin , z(ξ ) =

nn∑
in=1

φ
nn
in (ξ )zin , (3.38)

where φnn
in (ξ ) are the (nn − 1)th order shape functions, ξ is the local element coordinate

and in is the local node number. The isoparametric approach was chosen, so the boundary
variables ps

m, pc
m , vs

m, and vc
m are also approximated using the same shape functions as for

the coordinates. Thus, on element ie,

γie (ξ ) =
nn∑

in=1

φ
nn
in (ξ )γie in , (3.39)

where any of the boundary variables can be substituted for γie (ξ ), and γie in is the value of
the corresponding variable on local node in of element ie. Using this approximation in, for
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instance, equation (3.30), yields

C(x)ps
m(x) =

ne∑
ie=1

{ nn∑
in=1

ps
m ie in

1∫
−1

φ
nn
in (ξ )H

′
m(ξ )r(ξ )Jie (ξ ) dξ

+ ikρ0c0

nn∑
in=1

vs
m ie in

1∫
−1

φ
nn
in (ξ )Hm (ξ )r(ξ )Jie (ξ ) dξ

}
, (3.40)

where ps
m ie in is the value of ps

m at local node in of element ie and Jie (ξ ) the Jacobian of the
transformations given by equation (3.38), for element ie:

Jie (ξ ) =
[(

dr
dξ

)2

+
(

dz
dξ

)2
] 1

2

. (3.41)

Expressions similar to equation (3.40) can be obtained for the other boundary values using
equation (3.31).

For the solution process, a collocation scheme is applied. The observer points x on the
boundary are chosen successively to coincide with each global node ind and y is the (sur-
face) point of integration, now explicitly a function of ξ through equation (3.38). This
collocation method results in a set of nnd linear algebraic equations in terms of the un-
known pm, when vm is given on each node, and vice versa. The resulting equations may be
written in the following matrix form:

Amps
m = Bmvs

m, (3.42)

where ps
m and vs

m are the column vectors containing the nnd nodal values of ps
m and vs

m,
respectively. Am and Bm are square matrices with the various integrals as in equation (3.40)
as their elements. For the cosine terms of the Fourier series, a similar matrix equation
can be derived:

Ampc
m = Bmvc

m, (3.43)

where pc
m and vc

m are the column vectors containing the nnd nodal values of pc
m and vc

m.
Thus, two matrix equations result, relating the terms of the Fourier expansion of the
unknown variables to the Fourier coefficients of the boundary conditions. The matrix
equations that describe the acoustic radiation have to be formed for every Fourier har-
monic number m that is present in the Fourier expansion of the boundary conditions.

When the solution for all boundary values is computed, the value of the Fourier terms of
the pressure and its derivative for any surface or exterior point can easily be obtained by
applying an equation similar to equation (3.40) for ps

m
o, and pc

m
o, substituting the calculated

values for ps
m ie in , pc

m ie in , vs
m ie in and vc

m ie in . The resulting equation is an explicit relationship
between the acoustic variables on the surface of the radiating body and the acoustic
variables at any other position in the acoustic medium.
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3.4 Summary
An improved formulation for acoustic boundary element analysis with Fourier elements
was presented. In this formulation, that can be used for axisymmetric geometries with
non-axisymmetric boundary conditions, the dependence of the acoustic variables in cir-
cumferential direction is described with Fourier series expansions. In this way, the dimen-
sionality of the problem is reduced by one.

The novelty in the formulation is the way that the Fourier integrals of the kernel functions
are handled. In the formulation that was proposed here, this is done with an integration
algorithm which deploys efficient fast Fourier transform routines. The efficiency of this
approach compared to other Fourier BEM formulations is especially apparent when com-
plex boundary conditions with more than one Fourier harmonic are imposed. With the
fast Fourier transform integration algorithm the speedup factor of at least 50, for Fourier
BEM compared to 3-dimensional BEM can be maintained irrespective of the number of
Fourier harmonics in the boundary condition Fourier series.

Other important implementation aspects of any BEM method are the computation of
(nearly) singular integrals and the handling of the non-uniqueness problem for exterior
radiation problems. In the formulation that was proposed here, these are handled with
Gauss-Log integration and the CHIEF method, respectively. The complete Fourier BEM
formulation that was presented here was implemented in the acoustic code bArd [1998].
The application of the Fourier BEM formulation to analyze the acoustics of various MRI
scanner models will be shown in chapters 5 and 6.



4 The radiation modes formulation for
subsystems

4.1 Introduction
The radiation modes formulation is a rather new technique to characterize structural vi-
brations from an acoustical perspective. The radiation modes formulation is a technique
to determine a unique basis for the vibrations of a structure, which is orthonormal with
respect to the acoustically radiated power. The basis functions of this velocity basis are
called the radiation modes. Compared with the structural modes, well-known from the
structural dynamics field, some fundamental differences exist. Unlike structural modes,
the radiation modes do not depend on the structural behavior of a structure, but only on
the geometry and on the frequency. The radiation modes contribute independently to the
total sound power. Furthermore, with the radiation modes formulation, it is quite simple
to decompose the vibration field into efficiently radiating and non-radiating (evanescent)
components. Hence, the radiation modes can offer valuable insights for the acoustic engi-
neer.

In the literature, the introduction of the radiation modes concept dates from the begin-
ning of this decade. Borgiotti [1990] and Photiadis [1990] showed that an orthonormal
basis of the surface normal velocity can be found by singular value decomposition (SVD)
of a quadratic expression for the radiated power and also by SVD of a radiation operator
which relates surface vibration to far field pressure. The individual modes of the orthonor-
mal basis resulting from the SVD were called ‘singular velocity patterns’ or ‘surface velocity
filters’. Their corresponding singular values were shown to be directly related to the ra-
diation efficiency. In this way, the surface velocity field can be easily divided into radiating
and non-radiating components. Sarkissian [1991] showed that the same modes can be
found by an eigenvalue analysis of the real part of the surface impedance operator. Cune-
fare [1991] derived a modal representation from the expression for radiation efficiency
and showed the analogy of this representation with the Rayleigh quotient in structural dy-
namics. In subsequent articles [Cunefare and Currey, 1994; Currey and Cunefare, 1995],
the eigenvectors of the basis were called ‘radiation modes’ and their bounding, conver-
gence and sensitivity characteristics were investigated. Later, Chen and Ginsberg [1995]
introduced yet another form of ‘radiation modes’, derived from the complex power ex-
pression. These modes incorporate more elegantly the surface interaction mechanism
between surface pressure and normal velocity and are therefore well suited for structures
submerged in heavy acoustic fluids.

Examples of the application of the radiation modes concept can be found in the field of
acoustic holography [Borgiotti, 1990; Photiadis, 1990; Sarkissian, 1991], acoustic design
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sensitivity and optimization [Naghshineh et al., 1992; Shephard and Cunefare, 1997], cou-
pled structural-acoustic modeling [Chen and Ginsberg, 1995; Chen, 1997], and in the field
of active structural-acoustic control (ASAC) [Baumann et al., 1992; Elliott and Johnson,
1993; Naghshineh and Koopmann, 1993; Borgiotti and Jones, 1994; Naghshineh et al.,
1998]. These papers have in common, that they offer a unique perspective on the radi-
ation characteristics of structures, much like the vibration eigenmodes in the structural
dynamics field.

In this thesis, the radiation modes formulation is enhanced to enable the determination
of the radiation modes of acoustic systems with partly passive boundary conditions (e.g.
a partly rigid surface). The resulting radiation modes formulation for subsystems is not
only used to increase the insight into the acoustic radiation of a structure, but also as a
‘black box’ reduction technique for numerical acoustics, which is especially valuable in an
acoustic design optimization environment.

4.2 Theory of radiation modes
4.2.1 Radiation modes formulation

Consider a structure that is radiating sound into free space due to a harmonically vibrating
surface S. The acoustic pressure p̃ and velocity ũ for any point xS at surface S can then be
expressed as

p̃(xS, t) = Re
[
p(xS, ω)e

iωt]
, ũ(xS, t) = Re

[
u(xS, ω)e

iωt ]
, (4.1)

with ω as the angular frequency of the excitation. This acoustic pressure field has to satisfy
the Helmholtz equation (see equation (2.5)),

∇2 p + k2 p = 0, (4.2)

with free field wavenumber k = ω/c0. The structure is also subject to a normal velocity
boundary condition at its surface,

u · n ≡ v = η, (4.3)

with n the surface normal, v the surface normal component of u, and η the given surface
velocity boundary condition.

Regardless of the acoustic analysis method, the relationship between surface pressure p
and normal velocity v can be expressed with a complex linear operator form as

Lp(p) = Lv(v). (4.4)

To compute the time-averaged power radiated by the structure, the time-averaged acous-
tic normal intensity Ī · n has to be integrated over surface S,

P̄ =
∫
S

Ī · n dS, (4.5)

with Ī = p u∗ as the acoustic energy flux vector, and where ∗ denotes the complex
conjugate. The bar notation ¯ denotes the time average. Using the definition for the
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normal velocity (4.3), the time-averaged radiated acoustic power can be expressed as

P̄ = 1

2
Re

∫
S

pv∗dS. (4.6)

The acoustic pressure p can be solved from equation (4.4) and substituted in the power
relation (4.6) to obtain

P̄ = 1

2
Re

∫
S

L−1
p Lv (v)v

∗dS. (4.7)

It is common in acoustic analysis methods that the acoustic quantities at the surface of
the radiating structure are written as a sum of preselected basis functions, which are
denoted in vector form as φ = [φ1, φ2, . . . , φ j, . . . ]T. With use of so-called generalized
degrees of freedom for the pressure p = [p1, p2, . . . , p j, . . . ]T, and normal velocity
v = [v1, v2, . . . , v j, . . . ]T, the pressure and normal velocity can be discretized as

p(xS ) =
∑

j

φ j (rs )p j = φT p, (4.8)

v(xS ) =
∑

j

φ j (rs )v j = φTv. (4.9)

With this series expansion, the relation between pressure and normal velocity (4.4) can
be written in discretized form as

Ap = Bv. (4.10)

The expression for the radiated acoustic power (4.6) can also be discretized,

P̄ = 1

2
Re

∫
S

pTφφTv∗dS

= 1

2
Re

[
pTNv∗

]
. (4.11)

The discretization of the operator expression for the radiated acoustic power leads to

P̄ = 1

2
Re

∫
S

vTL−1
p Lv (φ)φ

Tv∗dS

= 1

2
Re

[
vT(A−1B)TNv∗

]
= 1

2
Re

[
vTZv∗

]
. (4.12)

The properties of the complex power coupling matrix Z can be understood by using the
reciprocity principle [Pierce, 1981; Kinsler et al., 1982]. Considering two acoustic fields,
denoted by the subscripts a and b, that result from differing vibrations of the structure,
the reciprocity principle,

∇ · (paub − pbua) = 0, (4.13)
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integrated over the structure’s volume V , after application of Gauss’ theorem yields∫
S

(paub − pbua) · n dS = 0. (4.14)

Using the operator expression (4.4) for p, the reciprocity principle can be rewritten as∫
S

L−1
p Lv(va)vbdS =

∫
S

L−1
p Lv(vb)vadS, (4.15)

or in discretized form,

vT
a Zvb = vT

b Zva. (4.16)

This implies that Z is symmetric. Because of the symmetry property of Z, only its real part
contributes to the radiated acoustic power. This is illustrated by the following derivation
adapted from Chen and Ginsberg [1995]. The complex power coupling matrix can be split
up in a real part C and an imaginary part D,

Z = C + iD, (4.17)

where both C and D are real symmetric matrices. With these, the complex power P̄c and
its complex conjugate P̄∗

c can be computed,

P̄c = 1

2
vTCv∗ + i

2
vTDv∗, P̄∗

c = 1

2
vTCv∗ − i

2
vTDv∗. (4.18)

The radiated acoustic power can be computed with

P̄ = Re(P̄c ) = 1

2
(P̄c + P̄∗

c ) = 1

2
vTCv∗, (4.19)

which shows that the quadratic sum described by each part is a real value, and that only
the real part of the matrix Z contributes to the radiated power. With this knowledge,
equation (4.12) can be rewritten as

P̄ = 1

2
vT Re

[
(A−1B)TN

]
v∗ = 1

2
vTCv∗. (4.20)

Matrix C may be interpreted as a power coupling matrix between individual elements of v,
and because the radiated power is always a positive quantity, matrix C is positive definite.

An important acoustic characteristic of a radiating source is its radiation efficiency. The
radiation efficiency σ of an acoustic source is defined as the ratio of the power per unit
area radiated by the source, and the power radiated by a reference source radiating plane
waves; e.g. an infinite plate, vibrating uniformly with the same mean square velocity as the
source,

σ ≡ P̄/S

ρ0c0〈v2〉
, (4.21)
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where P̄/S is the power per unit area radiated by the source and ρ0c0〈v2〉 is the power per
unit area radiated by the reference source. The 〈 〉 notation represents the spatial average
of a quantity, i.e.,

〈γ 〉 = 1

S

∫
S

γdS. (4.22)

Since the radiation efficiency is not strictly defined as the ratio of in- and outgoing energies,
its value can exceed one. Using the discretized form for pressure and normal velocity,
equation (4.21) can be written as

σ = 1

ρ0c0

Re
[
pTNv∗]

Re
[
vTNv∗] = 1

ρ0c0

vHCv
vHNv

. (4.23)

The expression obtained in this way has quadratic forms in its numerator and denomina-
tor. It can be interpreted as a Rayleigh quotient for the generalized eigenvalue problem

Cv = λNv, with σ = λ/(ρ0c0). (4.24)

The generalized eigenvalue problem (4.24) yields real eigenvalues λk and real eigenvectors
ψk. The corresponding eigenfunctions

ψk(xS ) =
∑

j

φ j (rs )ψ jk = φTψk, (4.25)

are called (velocity) radiation modes and their eigenvalues, divided by the specific acoustic
impedance z0 = ρ0c0 are their radiation efficiencies,

σk = λk

z0
. (4.26)

The eigenvalues and eigenvectors are real because the matrices C and N are real and
symmetric. It is customary to normalize the eigenvectors with respect to the matrix N,
which results in

ΨHNΨ = I, ΨHCΨ = Λ (4.27)

with Ψ = [ψ1, ψ2, . . . ψk, . . . ], Λ a diagonal matrix of the eigenvalues, and I as the
identity matrix.

The radiation modes simultaneously diagonalize the radiated acoustic power of the re-
garded source and the reference source. Because the matrices C and N are only depen-
dent on frequency and the geometry of the radiating surface, the radiation modes are
only dependent on those properties; they do not depend on the structural behavior of
the radiator.

The set of radiation modes ψk(rs ) can serve as a basis for the normal velocity distribution
v(rs ). The generalized degrees of freedom v of this velocity distribution v(rs ) can be
written as a superposition of the generalized degrees of freedom of the radiation modes
such that

v =
∑

k

ψkζk = Ψζ. (4.28)
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The velocity distribution can then be written as

v(rs ) =
∑

k

ζkψk(rs ) =
∑

k

∑
j

φ j (rs )ψ jkζk = φTΨζ. (4.29)

The vector of modal contribution coefficients ζ can be computed from equation (4.28)
by pre-multiplying this equation with ΨHN and using the orthogonality property for the
eigenvectors from equation (4.27),

ζ = ΨHNv. (4.30)

With these modal contribution coefficients ζ, computation of the radiated acoustic power
becomes trivial,

P̄ = 1

2

∑
k

z0σkζ
∗
k ζk = 1

2
ζHΛζ. (4.31)

The advantages of the radiation modes are evident. Because the radiation modes are
the velocity basis functions that orthogonalize the quadratic power expression, equa-
tion (4.20), they contribute independently to the radiated power. The velocity distribution
can be decomposed in radiation modes with equation (4.30) and the power contribution
of each mode is expressed through equation (4.31). The radiation modes only depend on
the geometry of the acoustic domain, not on the structural properties of the structural
domain. Thus, when the structural properties change, without changing the acoustic do-
main, the results of the radiation modes analysis can be reused, without the need for an
additional full acoustic analysis. This property of the radiation modes formulation will be
used in section 4.3 for the development of an acoustic reduction technique.

4.2.2 Radiation modes for subsystems

With the radiation modes formulation, independently radiating velocity patterns are iden-
tified for the complete acoustic domain, without incorporating its boundary conditions.
However, sometimes one is interested in the radiation modes of a part of the total acous-
tic domain only. When for instance it is known, prior to any structural-acoustic computa-
tions, that a (large) part of the acoustic boundary is rigid, then the radiation modes should
also be rigid on that part of the boundary. In that case, only the radiation modes of the
non-rigid part of the acoustic boundary are of interest. These can be computed as follows.

Consider the quadratic power expression for an acoustic system with prescribed velocity
boundary conditions at part 1 of the acoustic boundary and a priori unknown boundary
conditions at part 2 of the boundary. Then, partitioning the quadratic power expression
for the degrees of freedom for parts 1 and 2 of the boundary yields

P̄ = 1

2

[
vH

1 vH
2

] [C11 C12

C21 C22

] [
v1

v2

]
, (4.32)

or (using C21 = CH
12 = CT

12)

P̄ = 1

2
vH

1 C11v1 + vH
2 C21v1 + 1

2
vH

2 C22v2 . (4.33)
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When part 2 of the boundary is rigid, then v2 = 0, and the power expression simplifies
to

P̄ = 1

2
vH

1 C11v1, (4.34)

for which eigenvalue problem (4.24) can be solved with submatrices C11 and N11. When,
in general, an impedance boundary condition of the form

p2 = Yv2, (4.35)

holds for part 2 of the boundary, then the power expression can also be written explicitly
for v1. Similar to the power expression, the system equations can be partitioned,[

p1

p2

]
=
[

R11 R12

R21 R22

] [
v1

v2

]
, (4.36)

with matrix R = A−1B. This matrix is already computed as a part of the computation of
matrix C = Re[(A−1B)TN]. With help of this relationship, the velocities at boundary 2
can be written as

v2 = Hv1, with H = (
Y − R22

)−1
R21, (4.37)

and the resulting power expression becomes

P̄ = 1

2
vH

1 C′
11v1, with C′

11 = C11 + 2HHC21 + HHC22H. (4.38)

Again the eigenvalue problem (4.24) can be solved, now with submatrices C′
11 and N11.

The rigid wall condition for boundary 2 is a special case where of this general form with
C′

11 where H = 0.

4.3 Radiation modes reduction technique
The generalized eigenvalue problem of the real, symmetric matrices C and N, both of di-
mension (N × N), in equation (4.24) yields N real eigenvalues, ordered as λ1 > λ2 > . . . >

λN , and N orthonormal real eigenvectors. This means that the eigenvector that should
converge first in for instance a power iteration, corresponds to the largest eigenvalue and
hence largest radiation efficiency. Following converging eigenvectors have smaller eigenval-
ues/efficiencies. Borgiotti [1990] and later Cunefare [1991] found that in the low frequency
range, the radiation efficiencies fall off very rapidly with increasing mode order. This usu-
ally means that only the first few radiation modes contribute to the radiated power. The
other radiation modes correspond to evanescent acoustic fields which do not radiate
into the far field. This is why radiation modes are also known as surface velocity filters:
they filter the vibration distribution on the radiating surface and only pass the efficiently
radiating components into the far field [Elliott and Johnson, 1993]. The power radiation
of the vibrating structure can be described accurately with only a limited number of (ef-
ficient) radiation modes. This property is often used to compute the power radiation in
active structural-acoustic control (ASAC) schemes [Baumann et al., 1992; Naghshineh and
Koopmann, 1993; Elliott and Johnson, 1993; Borgiotti and Jones, 1994].
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The filtering property of radiation modes can be used in a reduction technique for the
acoustic power radiation of vibrating structures. The power radiation can be described
with a few radiation modes rather that with a full power coupling matrix C. If the boundary
conditions of the radiation problem are changed, without changing the structure’s radiat-
ing geometry, then the power radiation can be quickly evaluated using equations (4.30)
and (4.31) with truncated radiation modes matrix Ψ containing only those modes which
contribute to the power. In practice this truncation can be made by comparing the effi-
ciencies of the radiation modes and using a truncation criterion ct,

10 log10(σ1 )− 10 log10(σkt ) > ct, (4.39)

i.e., the matrix Ψ is truncated at radiation mode index kt for which the radiation efficiency
σkt is more than ct dB smaller than the efficiency of the first (modes efficient) radiation
mode. For practical applications a value for ct of about 30 dB is a realistic criterion.
However, one should be aware that the radiation efficiency does not alone determine the
radiated power. The contribution coefficients ζ are present quadratically in the power
equation (4.31). So, the contribution coefficients of the least efficient modes should not
be more than about 15 dB higher than the contribution coefficients of the more efficient
modes.

The error that is made by not incorporating the power contribution of the radiation
modes that were truncated can be computed easily. For that, first the remainder of the
velocity distribution should be calculated. Let Ψt be the truncated radiation modes matrix,
and ζt the truncated contribution coefficient vector, then the residual velocity field vr that
is not described by the truncated series of radiation modes equals

vr = v −
kt∑

k=1

ζkψk = v − Ψtζt . (4.40)

The power truncation error eP̄ is then limited by the product of the spatially-averaged and
time-averaged squared residual velocity vector vr and the lowest radiation efficiency of
the radiation modes in Ψt ,

eP̄ < z0σkt S〈v2
r 〉

< z0σkt v
H
r Nvr.

(4.41)

This equation enables an accurate estimation of the maximum error that is made when
the radiation modes reduction technique is used.

The implementation of the radiation modes reduction technique in a structural-acoustic
design environment is displayed in figure 4.1. This shows that a complete acoustic analysis
only has to be performed once for every new geometry of the acoustic domain. When
the acoustic geometry remains unchanged, the radiation mode results of a previous anal-
ysis can be used. To be able to use the reduction technique effectively, only the significant
radiation modes and their efficiencies need to be stored for every frequency that is used
in subsequent analyses with different boundary conditions, not the whole matrix C. To
compute the contribution coefficients ζ, the matrix N also needs to be stored, but for-
tunately this matrix is independent of the frequency. Because the number of significant
radiation modes increases with increasing wavenumber [Elliott and Johnson, 1993], it may



The radiation modes formulation for subsystems 47

start
acoustic analysis

acoustic
geometry
changed

compute sytem
matrices A, B, N

compute
radiation modes

store
radiation modes

retrieve
radiation
modes

compute
contribution
coefficients

compute
radiated power

end
acoustic analysis

start
design analysis

acoustic
analysis

end
design analysis

change
model

retrieve
model

structural
analysis

store
model yes

no

yes
analyze
another
design

no

figure 4.1 Flow chart of the implementation of the radiation modes reduction technique in a
structural-acoustic design environment.

be unrewarding to use this radiation modes technique in the very high frequency domain.
However, for the applications presented in this thesis, this is not the case (see chapters 5
and 6).
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4.4 Summary
The general formulation of the radiation modes of an acoustic system was presented.
With the radiation modes formulation a unique orthonormal basis for the surface ve-
locity can be obtained. This basis is orthonormal with respect to the radiated acoustic
power: it diagonalizes the quadratic power expression. As such it determines a velocity
basis for which each of the basis functions, the so-called radiation modes, contributes
independently to the radiated power.

The radiation modes that are found with the general radiation modes formulation are
velocity patterns for the whole acoustic domain. Often only a part of the acoustic system
is excited, while the remainder of the acoustic domain is passive. Such system knowl-
edge can be introduced in the radiation modes formulation by using the radiation modes
formulation for subsystems that was developed in this thesis.

The radiation modes formulation can also be used as an acoustic model reduction tech-
nique, to speed up the acoustic analysis part in a structural-acoustic design environment.
A technique was outlined in which only the most efficient radiation modes for an acoustic
geometry are stored and can be reused to compute the radiated acoustic power in subse-
quent design analyses for different structural designs, when the geometry of the acoustic
domain remains unchanged. Thus, only one complete acoustic analysis is required for each
acoustic geometry change, instead of a complete analysis for each structural design change.
The number of radiation modes is truncated to decrease the storage requirements. The
truncation error that is introduced by incorporating only the most efficient modes can be
assessed easily.

The radiation modes formulation for subsystems, as presented here, was implemented
in the acoustic code bArd [1998]. Using bArd as an engine to compute the radiation
modes, the model reduction technique that was outlined, was implemented in the SAT-
URN toolbox [Kessels et al., 1998; Kessels, 1999]. The application of the radiation modes
formulation for the acoustic design of MRI scanners will be shown in chapters 5 and 6.



5 Towards the acoustic design of an MRI
scanner

5.1 Introduction
To enable the use of acoustic models for the design of MRI scanners, it is important
to know what kind of information needs to be provided by the models and how they
should be used to obtain this information. Concretely, this means that an appropriate
design objective function needs to be chosen to quantify the noise production of the MRI
scanner, and some guidelines are necessary how to calculate numerical values for the
design objective function with the acoustic models.

The first problem that needs to be addressed is the choice of an appropriate design ob-
jective function for acoustic design of the MRI scanner. The noise in the scanner is for a
major part produced by gradient coil system vibrations. The noise can be quantified by
for instance the sound pressure level in the MRI bore, or by the sound power level. The
relationship between these quantities is unclear beforehand, so in principle it is possible
to decrease the sound power level and at the same time increase the sound pressure level
inside the MRI bore. On the other hand, it might also be possible that a strong positive
correlation exists between the vibration level and the sound pressure and power levels.
Then it would be possible and sufficient to use the vibration level of the gradient coil sys-
tem as a design objective function, which makes a detailed acoustic analysis unnecessary.
These issues are addressed in section 5.2.

When an appropriate design objective function has been defined, acoustic models of the
MRI scanner are used to obtain numerical values for this function. This enables an acoustic
comparison between different MRI designs. However, the acoustic information that is
needed to obtain a value for the design objective function can often be obtained in many
different ways, and in different levels of accuracy. Furthermore, most modeling techniques
are somewhat restricted in the application range, so it might not be possible to cover the
complete design space with a certain modeling technique. Conversely, some techniques
might provide more information than is strictly needed to compute the design objective
function. This might provide the designer with additional useful information. These issues
necessitate a discussion about the characteristics, advantages, and disadvantages of the
various modeling techniques that are presented in this thesis, for the design process of
the MRI scanner. This discussion is covered in section 5.3.
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5.2 Choice of an appropriate design objective function
Inside the MRI scanner, a patient experiences direct sound radiation from the gradient
coil system (casing). The scanner’s operator and the medical staff near the scanner also
experience noise directly from the gradient coil system, but also from other parts of
the scanner, which are excited indirectly by gradient coil system vibrations. However,
measurements on an MRI scanner system have revealed that the major contribution to the
sound production is caused by the direct radiation of the gradient coil system [Kooyman
et al., 1993]. Therefore, given the current MRI scanner concept, the main objective of
a low-noise design for the MRI scanner should be the decrease of the noise produced
directly by the gradient coil system vibration. This objective is quantified in the design
objective function, whose mathematical expression is a function of the design variables
often indirectly expressed through the structural-acoustic response of the system.

5.2.1 Literature

The literature on the choice of design objective functions for acoustic design of radiating
structures is limited. Often a choice is made for radiated sound power or sound pressure
level at a certain position in space without providing much argumentation. An exception
to this rule is the research of Lamancusa [1993]. In his paper, Lamancusa evaluated several
choices for a design objective function for the numerical optimization of the structural-
acoustic low-noise design of rectangular panels. He found that the choice of an appropriate
objective function is critical to the success of the low-noise design optimization. For panels
he concluded that power is a direct measure of acoustic performance and when used as a
design objective function, produces the most consistently improved designs.

A disadvantage of power (or pressure) as the design objective function is that its calcula-
tion requires a complete acoustic analysis. Because structural vibrations are the origin of
the noise production, the mean square velocity is sometimes used as an alternative design
objective function. This is permissible when a good correlation exists between the radi-
ated power and the vibration level. Using the vibration level has the advantage that only
a structural calculation is required, which significantly decreases the total analysis time.
For rectangular panels, Lamancusa [1993] found that using the vibration level as a design
objective function produced similar results as using the sound power level as a design ob-
jective function. This indicates that for the rectangular panels that Lamancusa investigated,
a strong correlation between vibration level and sound power level can be established.

An alternative method to decrease the computational effort and yet to incorporate the
acoustic characteristics of the problem is to look at the radiation efficiency of the struc-
tural modes. Although this can unveil important radiation characteristics of a structure, it
is not a good idea to use this in an optimization, because (at least for panels) Lamancusa
found that decreasing the radiation efficiency of individual modes does not guarantee de-
crease of the radiated power due to modal coupling effects and due to potential increase
in mean square velocity. These results were confirmed by a study of Termeer [1997].

Although the findings of Lamancusa can aid in the choice of an appropriate design objective
function, his conclusions should be followed only with cautiousness as they were obtained
by studying the radiation of square panels only. The acoustic behavior of an MRI scanner
is quite different from the behavior of a vibrating panel. Therefore, a design objective
function should be chosen here that properly incorporates the radiation characteristics of
the MRI scanner. This will be discussed next.
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5.2.2 Assessing the acoustic performance

For the MRI scanner three obvious acoustic design objective functions were considered:
• minimizing the vibration level (mean square velocity),

• minimizing the sound power level,

• minimizing the (spatially-averaged) sound pressure level.
The advantages and disadvantages of the application of these objective functions are dis-
cussed in the following paragraphs.

Vibration level. Using the vibration level as objective function is computationally advan-
tageous because it does not require an acoustic analysis. However, possible changes of
the radiation efficiency characteristics are neglected then. As a consequence, lowering
the vibration response does not automatically guarantee lowering the noise. Recall the
expression for the sound power,

P̄ = σρ0c0S〈v̄2〉.
If the vibration level decreases, but the radiation efficiency σ increases, then the resulting
noise level P̄ will not decrease proportionally and could even increase. Moreover, it is not
uncommon that an increase of vibration level accompanies a decrease in noise level [Bau-
mann et al., 1992]. Thus the vibration level as a design objective function is only feasible
when the radiation efficiency is nearly constant in the frequency range of interest and
does not change significantly in the optimization process. Only then, a change in vibration
level is directly related to the change in noise level, which means that the vibration level
can be used as an objective function.

Sound power level. Choosing the radiated sound power level as design objective function
is a direct measure for the noise that is produced by a radiating structure. However, the
power calculation requires a complete acoustic analysis after the structural calculations.
Besides being a global acoustic measure, the radiated acoustic power is also closely related
to the acoustic pressure that can be sensed in the far field. However, evanescent (non-
radiating) pressure waves may be present near the surface of a radiating structure which
may also determine the acoustic pressure load that is experienced there. Thus the radiated
power is a good measure for the far field pressure and can be a good measure for the field
near the structure if the evanescent pressure field is negligible with respect to the total
radiated pressure field. Unfortunately, it is often impossible to prove whether or not such
an assumption is justified. Its validity can only be established by studying the correlation
between pressure and power results of many different structural designs and load cases.

Important for efficient structural-acoustic design is the case when the radiating shape of a
structure (the boundary of the acoustic domain) does not change (often) during the design
process. Then the acoustic power can be calculated rather fast with the radiation modes
formulation (see section 4.3). When the acoustic power would be chosen as the objective
function, then a complete acoustic analysis would have to be performed only once per
geometry, and the results of the radiation modes analysis can be reused in subsequent
acoustic analyses. This will greatly reduce the calculation time disadvantage due to taking
the acoustic power as design objective function.

Sound pressure level. Selecting the sound pressure level as design objective function
seems to be very attractive because it most directly relates the calculated response to the
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noise that is experienced. But, it is advisable to evaluate the acoustic pressure not on a
single position, but on a number of points because the spatial dependence of the acoustic
pressure is often quite large, and also very sensitive to small perturbations. Unfortunately,
a reduction technique like radiation modes for the radiated acoustic power, is not (yet)
available for the acoustic pressure, which means that a complete acoustic analysis is re-
quired for each design. So taking the pressure level as design objective function is only
advisable when one is interested in the sound pressure at certain positions in the acoustic
domain where the correlation between sound power and sound pressure is poor. This
can happen for instance near the surface of a vibrating structure for which the evanescent
pressure fields cannot be neglected, or in a strongly directional sound field.

5.2.3 A design objective function for MRI scanner noise

Applying the previous reasoning to an MRI scanner, it is certainly not advisable to use the
vibration level beforehand as an objective function, because the behavior of the radiation
efficiency as a function of frequency has not yet been established. In sections 5.3 and 6.2
it will be shown that the radiation efficiency of the MRI scanner is in fact a function that
strongly depends on the frequency. Furthermore, it is not clear beforehand whether future
design alterations will affect the radiation efficiency significantly. For these two reasons, a
strong correlation between vibration level and acoustic performance of an MRI scanner is
not to be expected.

The choice between selecting the sound power level or the sound pressure level as ob-
jective functions, is less easy to make. It will be shown in sections 5.3 that, for a (baffled)
MRI system subject to a representative vibration distribution, the spectra of the radiated
power and sound pressure inside the MRI bore are closely related. In other words, the
evanescent pressure fields are negligible. However, similar spectra for one MRI scanner
model do not guarantee similar spectra for an altered model. Therefore, for the design it
is also important to know if alterations in the MRI scanner model will result in acoustic
spectra changes that are similar for both sound power and pressure. Only if the strong
correlation is preserved, then sound power and pressure are interchangeable as design
objective functions. This issue is considered in the design studies presented in section 6.4.

If there is a close relation between sound power and sound pressure, then choice for
sound power as design objective function is obvious for three reasons: it is a measure for
both the field in the MRI bore and for the far field, it can be obtained relatively easy, and
it is possible to reduce the calculation time of the acoustic analyses by using the radiation
modes reduction technique.

5.2.4 Handling of broadband excitation

Lamancusa [1993] studied the acoustic optimization of rectangular panels and found that
optimization improvements for single frequency excitations could be extended over a
wider frequency range. This was caused by the fact that the improvements tended to de-
crease the (overall) vibration level, rather than decreasing the radiation efficiency at this
single frequency. Therefore, he concluded that single frequency optimization is effective
and produces very good broadband results. But, as for the choice between pressure and
power as objective function, such a conclusion can only be made afterwards. For acoustic
problems with different structures, these conclusions could easily be opposite. It is possi-
ble that optimization improvements will not alter the vibration level, but instead decrease
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the radiation efficiency at one frequency. But, in a wider frequency band, the radiation
efficiency might be increased and hence the optimized design would produce more noise
in a wider frequency band. To prevent such problems, it is necessary to use broadband
optimization techniques when dealing with broadband excitation.

The broadband excitation of the MRI scanner is handled in this thesis by performing
acoustic analyses on a number of distinct frequencies. The frequency spacing has to be
chosen such that no significant new response characteristics are introduced by further
increasing the number of frequencies. Preliminary studies for this thesis have revealed that
for the MRI scanner, about 50 frequencies are needed in the frequency range of interest
(100 − 2000 Hz). The spacing between the frequencies was chosen logarithmically. With
this spacing, the acoustic response was calculated at typically four frequencies per third
octave band.

Small differences in the acoustic responses of different models do not have a serious
impact on the amount of noise that is experienced. For instance, a small frequency shift
of a resonance peak will be visible in the narrow-band spectrum, but the overall noise
sensation will be similar. Therefore, some of the results presented in this thesis will also
be shown as A-weighted responses which facilitates a more fair comparison of results.

To compute the third octave levels, the narrow-band spectra were integrated over third
octave bands (indicated in the figures with the addition (3rd) in the ordinate labels). For
the integration, it is assumed that the narrow-band spectra can be interpolated within each
frequency band. Since the radiation efficiency is defined as a ratio of energies, A-weighing
and integrating over a frequency band does not make much sense. Therefore, the third
octave band levels for the radiation efficiencies were averaged over the frequency bands
(indicated in the figures with the addition (3rd,avg) in the ordinate labels).

5.3 Application of the different acoustic formulations in the design
process
In chapters 2 and 3, two acoustic modeling techniques for the MRI scanner were pre-
sented: a semi-analytical baffled finite duct formulation for cylindrical ducts with constant
cross-section and a Fourier BEM technique which can handle a large variety of axisym-
metric MRI geometries. Furthermore, in chapter 4, a technique was developed to obtain
a modal decomposition of the vibration field to obtain independently radiating vibration
patterns. These techniques all have their merits for the design process of the MRI scanner,
but they also have disadvantages and restrictions. These will be discussed here.

5.3.1 Comparison between the baffled duct and Fourier BEM formulations

The main feature of the baffled finite duct formulation is that it directly provides insight
into the physics of acoustic radiation of the scanner, as will be shown here. From its
mathematical formulation it follows that the field inside the duct is a convolution of the
field of a simple source in the duct and the vibration distribution of the gradient coil
system (see equation (2.24)). The part of this acoustic field that is generated outside
the scanner bore is determined by the transmission coefficients which depend on the
frequency and the duct diameter (see equation (2.48)). Also, as in infinite ducts, the cut-
on and cut-off phenomena are present, which are related to the fact that duct modes
can only propagate acoustic energy above their so-called cut-on frequencies. The most
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important phenomenon in finite ducts that is revealed by this baffled duct formulation, is
that of so-called near cut-on resonances. This will be discussed in section 6.2, where it
is shown that these radiation characteristics can be investigated easily and efficiently with
the baffled duct formulation.

The benefits of Fourier BEM lie in the almost infinite variation in axisymmetric geome-
tries that can be modeled with this formulation. This is in contrast with the baffled duct
formulation, where only cylindrical ducts with constant cross-section can be modeled.
Unfortunately the formulation of a Fourier BEM model for the MRI scanner provides no
direct insight into its acoustical characteristics. But it is possible to convey the insights
that were gained with the baffled duct model to a similar Fourier BEM model. When
the Fourier BEM model is subsequently altered, it is still possible to relate the response
changes caused by the design changes to the physics of the radiation phenomena that
were observed with the baffled duct model. An example of the strength of using this
methodology in the design process is presented in section 6.3.2.

An opposite approach can also be followed: by comparing results from different baffled
duct models with a Fourier BEM model of the MRI scanner that is almost equivalent,
also more physical insight into certain acoustic phenomena can be obtained. In this way,
the altered response characteristics due to changes in the baffled duct model can be
investigated when the Fourier BEM model serves as a reference. This will be shown next.

Numerical experiments on the truncation of the Fourier-Bessel series.

When the baffled duct formulation is used for an acoustic model of the scanner, the
pressure field inside the MRI scanner bore is determined by the amplitudes of the Fourier-
Bessel modes which describe the acoustic field (see equation (2.8)). For the MRI scanner,
which is modeled as a duct with vibrating walls, these amplitudes are a function of the axial
coordinate z (see equation (2.38)). The number of Fourier-Bessel modes N that is used in
a numerical analysis with the baffled duct model (section 2.3) determines the accuracy of
both the pressure field and the radiated power, but also determines the size of the system
matrices and hence the computational effort.

From general duct acoustics theory, it is known that radiated acoustic power is trans-
ported only by cut-on modes (modes for which the axial acoustic wavenumber kmµ is
real; see section 2.2.2). Below a certain frequency there is only a limited number of cut-on
modes. Therefore, for an accurate computation of the radiated power in a baffled duct
model one only needs to incorporate the cut-on modes, so the number N may be rela-
tively small. On the other hand, Hewlett et al. [1995] found that some of the cut-off modes
need to be included in a baffled duct model analysis to properly predict the pressure field.
However, no recommendation was given on the number of extra modes. Therefore, it is
unclear how many modes need to be used for an accurate prediction of the pressure field.
This will be investigated here with a numerical experiment.

To assess the influence on the predicted acoustic response of truncation of the Fourier-
Bessel series, the number of Fourier-Bessel modes for a baffled duct model was varied
from N = 5, N = 10, N = 25 to N = 40. These results were compared with the results
from a Fourier BEM model. The geometry, boundary conditions and numerical integration
accuracy of the baffled duct and Fourier BEM models were similar, except for the outer
radius which is infinite for the baffled duct model and r = 1 m for the Fourier BEM model.
Both models are depicted in figure 5.1.
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figure 5.1 Axisymmetric duct models. The vibration field was described for the part of the duct
where the gradient coil system is located for an MRI scanner, indicated by the thick lines.

For the excitation of the models, a vibration distribution must be specified inside the
duct. In the case of the real MRI scanner, the acoustic domain in the scanner is excited
by gradient coil system vibrations. For the acoustic analyses, a representative vibration
excitation was computed with a simplified structural model of the scanner. Details about
the computation of this excitation can be found in appendix C.

The amplitude of the Lorentz force excitation as a function of the frequency depends very
much on the MRI scanning sequence that is used. Because it is impractical to analyze the
structural response for every possible scanning sequence, it was chosen to apply a uniform
force spectrum for the calculations. In this way, the response characteristics for a large
class of scanning sequences can be studied. For a realistic scanning sequence, the non-
uniform force spectrum should be accounted for, for instance by weighing the acoustic
response spectra by the relative contribution of the forces as a function of frequency.

Since the scanner’s excitation is broadbanded, the response at 53 frequencies in the fre-
quency range 100 − 2000 Hz was calculated (see also section 5.2.4). To facilitate the
comparison of results throughout this thesis, the representative excitation that was used
here, will be applied in all subsequent analyses, except where explicitly stated otherwise.

The vibration level of the representative excitation as a function of frequency is shown
in figure 5.2. The results are presented here as the narrow-band spectrum and an A-
weighted spectrum where the spatially-averaged mean square velocity has been integrated
over each third octave band.

It should be noted that the representative vibration distribution only contains the m = 1
circumferential harmonic and displays distinct resonance peaks. Measurements by Kooy-
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figure 5.2 Representative excitation velocity level, presented as a narrow-band spectrum (left) and
as an A-weighted spectrum which is integrated over third octave bands (right).

man et al. [1993] showed that the resonances in the vibration level of a real gradient coil
system are less distinct which suggests an underestimation of the damping in the computed
vibration distribution. Moreover, recent measurements by Kessels [1999] revealed that a
real MRI scanner’s vibration distribution also contains multiple circumferential harmonics.
This is probably caused by a non-axisymmetric distribution of the material properties and
construction imperfections, which causes excitation of multiple circumferential harmon-
ics in the vibration response by each of the circumferential harmonic components in the
distributed force. This harmonic coupling was not incorporated in the structural model.
A discussion about the influence of these aspects can be found in Kessels [1999].

The above mentioned discrepancies between computed and measured vibrations, are a
warning that not all of the results and conclusions can be promptly translated for practical
use. When interpreting the computational results, the restrictions of the applied vibration
field have to be kept in mind. Strictly speaking, the results computed here are only valid
for real gradient coil systems with the same materials as used in the computations and
subject to the same excitation force. But fortunately, the results computed here also
reveal the important acoustic characteristics for a whole class of similar gradient coil
systems in general, as will become clear from the studies presented next. Therefore,
most conclusions and recommendations remain usable when the vibration distribution
contains multiple harmonics and when the resonance peaks are less pronounced. Where
appropriate, remarks will be made as to what extent the results and conclusions will
change when the vibration excitation is altered.

Results and discussion

Now, the results of the numerical experiment will be presented and discussed. For the
baffled duct models and the Fourier BEM model, the following response quantities were
computed: the sound power level, radiation efficiency, and sound pressure level (mean
square value, spatially averaged over the wall surface). All acoustic calculations here, as
well as later in this thesis were performed with the program bArd [1998]. The frequency
range and spacing for the acoustic analyses were chosen identical to those of the structural
analysis: 53 frequencies, logarithmically spaced in the range 100 − 2000 Hz, resulting in 4
frequencies per third octave band, on the average.
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duct mode (m, µ).
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figure 5.3 Acoustic responses for Fourier BEM model and baffled finite duct with different number
of Fourier-Bessel duct modes N. : N = 5; : N = 10; : N = 25; : N = 40; :
Fourier BEM model.

The sound pressure level at the wall is used as a measure of the pressure field inside the
duct and includes the contribution of the evanescent pressure waves. The radiated power
is taken as a measure for the far field response. The radiation efficiency is a measure for
the effectiveness of the transformation of vibration energy into acoustic energy radiated
from the duct. The spectra of these results can be found in figure 5.3. The sound pressure
level difference in this figure is defined as the difference between the sound pressure level
of the baffled duct model and the sound pressure level of the Fourier BEM model.

The radiated power spectra for the baffled duct models in figure 5.3(a) show that the
power radiation is relatively insensitive to the number of Fourier-Bessel modes N. This
indicates that a good approximation for the power can be made with only five Fourier-
Bessel modes. This confirms the reasoning that radiated power is associated with cut-on
(i.e. propagating) modes of the acoustic field. A mode is cut-on here if the excitation
frequency is above the Fourier-Bessel mode’s cut-on frequency fmµ (see appendix A) so
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its corresponding axial wavenumber kmµ is real. If all cut-on modes are taken into account,
the approximation of the radiated power will be good. In these simulations at most four
cut-on modes can be present below 2000 Hz in the acoustic field (see table A.2(a) in
appendix A). As a consequence, when taking more than N = 3 modes into account, the
computed values for the radiated power are accurate. Differences between the power
spectra for the Fourier BEM model and the baffled duct models are only visible for low
frequencies. These differences are caused by the finiteness of the outer radius of the
Fourier BEM model and decrease when the outer radius of the Fourier BEM model is
increased [Kuijpers et al., 1998a].

The results for the sound pressure level at the duct wall are approximated sufficiently
accurate at frequencies where the pressure is relatively high in figure 5.3(b). At these
frequencies, the results obtained with the baffled duct model compare very well with the
Fourier BEM model results. However, there are considerable pressure level differences at
frequencies where the pressure is relatively low, especially when only a few Fourier-Bessel
modes are taken into account (see figures 5.3(b) and 5.3(d)). For this model, this indicates
that high sound pressure and radiated power values are associated with wall vibration
energy being transferred to cut-on duct modes, whereas low sound pressure and power
values are associated with vibration energy being transferred to cut-off duct modes. Thus,
a logical consequence of not including these cut-off modes is a less accurate prediction of
the pressure level at frequencies where the pressure level is relatively low.

If a decreased accuracy at low pressure values is not acceptable then at least N = 25
modes should be included to obtain results that are within a 0.5 dB range of the Fourier
BEM results. If the constraints on the pressure results are less strict, then fewer modes
are sufficient. For instance when the pressure should be accurate (i.e. within 1 dB of the
Fourier BEM results) at frequencies where the pressure is relatively high, then even the
model with only N = 5 Fourier Bessel modes suffices. It is anticipated that the pressure
level differences can be further minimized when the number of Fourier-Bessel modes is
further increased. However, the number of modes cannot be increased beyond a certain
limit because of numerical overflow and underflow errors.1

A remarkable acoustical phenomenon that is observed, are the peaks in the radiation effi-
ciency curves for both models. At a number of frequencies the radiation efficiency is very
high, with values that reach out 20 dB above surrounding values. The peaks are located
just above the cut-on frequencies f1µ = 296, 855, 1368, and 1877 Hz (see table A.2(a)).
These are the cut-on frequencies for different numbers of nodal circles µ = 1, 2, 3, and 4,
respectively, of the Fourier-Bessel duct modes with Fourier harmonic number m = 1.
These distinct peaks are also observed in the power and pressure spectra. Since these
peaks are predicted by both formulations they are likely to indicate a genuine acoustic
characteristic of a finite duct, rather than an artifact of the mathematical formulation of
the methods. The origin of these peaks will be discussed in the next chapter in section 6.2.

Looking at the results for both models, there is no clear preference for one of both
methods. But, an attractive additional property of analyses with the baffled duct models
is their numerical efficiency compared with Fourier BEM models [Kuijpers et al., 1998a].
This is especially noticeable for the baffled duct models with only a low number of Fourier-
Bessel modes N, when a speed increase factor of 15 was achieved. But, the side effect of

1. Overflow and underflow errors occur in vectors h➀ and h➁ (see equations (2.53) and (2.58)) for large N
and consequently large values of the product kmµz.
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the less accurate low pressure values should then be allowed for. Fortunately, for low-
noise design, the high pressure values determine the noise load, so inaccuracy of the low
pressure values is of lesser importance. Hence, the baffled duct formulation can be used
as a quick and accurate investigative tool for preliminary design studies with simplified MRI
scanner models.

Another issue that has to be considered for modeling the MRI scanner is the fact that
with the baffled duct model only ducts with a constant cross-section can be modeled.
This restriction may prevent the baffled duct formulation to be used for the complete
design space for the scanner, but its formulation then still offers some physical insights
that can be extended to more complex geometries, as will be shown in section 6.3.2.

Conclusions

The application of the baffled duct and Fourier BEM formulation for design studies of
MRI scanners was considered in this section. It was observed that a good prediction of
the radiated power can be obtained with the baffled duct model with only a few Fourier-
Bessel duct modes in the formulation. The acoustic responses show a good correlation
between the sound power level and sound pressure level inside the MRI bore. This strong
correlation manifests itself in the peaks in the power and pressure spectra just above the
cut-on frequencies of the Fourier-Bessel duct modes. These typical aspects of the finite
duct radiation will be discussed more extensively in the next chapter.

The use of the baffled duct model for all stages in the design of the MRI scanner is
infeasible because the model geometry with this formulation is restricted to ducts with
constant cross-section. But it can still be used as a quick investigative tool. For models with
geometrical configurations other than constant cross-section, the Fourier BEM model is a
usable alternative. The insights gained with the baffled duct model can be conveyed to the
Fourier BEM model to cover a larger design space. The radiation modes formulation can
aid in this process, as will be shown next.

5.3.2 Application of the radiation modes formulation

In this section it will be shown that the radiation modes formulation offers a unique
perspective into the radiation characteristics of finite ducts with vibrating walls. It will
also be shown that these characteristics make the use of the radiation modes reduction
technique feasible for these finite ducts, for low to medium frequencies.

The velocity distribution of a vibrating structure can be decomposed in an orthogonal
modal basis for each frequency. These modes are called radiation modes because they
independently contribute to the radiated acoustic power. Each radiation mode has an as-
sociated modal radiation efficiency. This enables a decomposition of the vibration field
in a set of efficiently and a set of less efficiently radiating components. As was explained
in chapter 4, each velocity distribution can be expressed as a weighted sum of radiation
modes. The weighting factors are called modal contribution coefficients. The radiated
acoustic power is the simple sum of the products of the squared modal contribution coef-
ficients divided by two and multiplied by their corresponding modal radiation efficiencies.
This enables the use of the radiation modes formulation as a model reduction technique
to speed up subsequent sound power calculations with the same acoustic geometry.
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Modal contribution coefficients

The modal contribution coefficient is a measure for the contribution of a radiation mode
to the vibration field. The squared modal contribution coefficient multiplied by its cor-
responding modal radiation efficiency is a measure for the (orthogonal) contribution of a
certain radiation mode to the total radiated power. With these measures, the components
of the vibration which contribute the most to the noise, can be identified. Suppressing the
vibration level (i.e. the contribution coefficient) of the radiation modes that contribute
the most to the radiated power results in a decrease of the noise level that is produced.
For tonal or narrow-band excitation this can be practically realizable by passive or ac-
tive vibration control [Baumann et al., 1992; Elliott and Johnson, 1993; Naghshineh and
Koopmann, 1993; Borgiotti and Jones, 1994; Naghshineh et al., 1998]. For broadband ex-
citations, this is much more difficult to accomplish because of the frequency dependence
of the radiation mode shapes. This necessitates a suppression of a different efficient vibra-
tion distribution at each frequency, which is hard to accomplish for all efficient vibration
distributions simultaneously. But a contribution analysis with radiation modes still offers
insight into the radiation characteristics of structures with broadband excitation, as will
be shown next.

There is a large amount of information that can be obtained from a radiation modes
analysis of a structure with broadband excitation. To illustrate this statement, a radiation
modes analysis was performed with a Fourier BEM model of a simplified MRI scanner (see
figure 5.1(b)) with a representative broadband excitation (see section 5.3.1). The results of
this analysis can be found in figure 5.4. In figure 5.4(a) the modal contribution coefficients
of three radiation modes that contribute the most to the sound power are depicted for
each frequency. These modes were ordered by magnitude of their radiation efficiency.
This efficiency is shown in figure 5.4(b). The contribution to the radiated power for each
of the selected radiation mode is shown in figure 5.4(c), together with the total power
radiation. Finally, the actual radiation efficiency of this vibration can be compared with the
radiation efficiency of the radiation mode that contributes the most in figure 5.4(d).

Some remarks have to be made before interpreting these results. The radiation modes
that were chosen in this example are the modes that contribute the most to the radiated
power. These modes are not necessarily the radiation modes with the largest efficiencies,
but they have the largest product of squared modal contribution coefficient and the modal
radiation efficiency. It may very well be possible that there are some radiation modes
which are more efficient than these three, but they were not excited by the vibration
field. In other words, their modal contribution coefficient is very small (or zero). For
the analysis presented here, the excitation field is symmetric with respect to the duct’s
isocenter cross-section because the excitation force is also symmetric (see appendix C).
Therefore, the modal contribution coefficients of the antisymmetric radiation modes will
be zero although they might have a large radiation efficiency. To be more precise, in the
results presented here, the three modes correspond to the three most efficient symmetric
radiation modes.

The three radiation modes participate equally in the vibration field (see figure 5.4(a)) Their
contribution coefficients are of the same order of magnitude. But, the radiation efficiencies
of the second and third radiation mode are considerably lower than that of the first mode,
especially in the lower frequency range (see figure 5.4(b)). Therefore, the contribution to
the radiated power of the second and third mode is only significant at higher frequencies
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(a) Modal contribution coefficients per radiation
mode.
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(b) Radiation efficiency per radiation mode.
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(c) Power contribution per radiation modes
and total radiated power.
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(d) Radiation efficiency of most efficient radia-
tion mode and total radiation efficiency.

figure 5.4 Radiation modes information for the MRI scanner model. : first radiation mode;
: second radiation mode; : third radiation mode; : total.

(see figure 5.4(c)). Until about the second cut-on frequency of the m = 1 duct mode
(855 Hz), only the first radiation mode contributes to the radiated power, even though
its contribution coefficient is the lowest for the major part of this frequency range. After
that, until the third cut-on frequency of the m = 1 duct mode (1368 Hz), only the first and
second modes contribute to the power. In the frequency range from 1368 Hz to 2000 Hz
all three radiation modes contribute to the power. But, although the contribution of mode
two and three is significant, the first mode (the most efficient symmetric radiation mode)
still dominates the power radiation, because, for almost the whole frequency range, its
power spectrum is indistinguishable from the total power spectrum. In figure 5.4(c), only
at about 800 and 1800 Hz slight differences can be observed.

It is also interesting to see that the actual radiation efficiency of the vibration distribu-
tion is near its maximum value just above the cut-on frequencies of the duct (see fig-
ure 5.4(d)). This means that the actual vibration at those frequencies matches very good
with the shape of the most efficient symmetric radiation mode. This can also be seen
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(a) Example of the grey scale repre-
sentation of the vibration distribution
along the axial coordinate.
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(b) Radiation mode shapes of the mode that
contributes modes to the radiated power. The
numbers below the vibration distributions de-
note the order number of the predominant
radiation mode (e.g. 2 means that at that
frequency, the second radiation mode con-
tributes the most to the radiated power and
is plotted here).

figure 5.5 Vibration distribution of the radiation modes in axial direction

from figure 5.4(a), where the contribution coefficient of the most efficient radiation mode
is maximal just above the cut-on frequencies. This again points to the importance of duct
acoustic phenomena for the (simplified) MRI scanner. Later in this thesis, the relevance of
these insights for structural-acoustic optimization will be considered (see section 6.4).

Radiation mode shapes

It is important to remember that the axial shapes of the radiation modes change with
increasing frequency. This can be illustrated by plotting the vibration distribution along the
vibrating part of the finite duct model for Fourier harmonic m = 1 (so a cosine variation
of the vibrations is assumed in the circumferential direction). The vibration distribution
of the radiation mode that contributes the most to the radiated power is shown as a
function of the frequency in figure 5.5.

The shape of the most contributing radiation mode is a gradually changing function of the
frequency. The axial wavenumber content of the modes (indicated here by the number
of black/white transitions) increases gradually with increasing frequency. But at the cut-
on frequencies the shape changes dramatically. At those frequencies, the radiation mode
shape has a much lower axial wavenumber. After this sudden change the axial wavenumber
is again increasing gradually.

In fact, the vibration distribution near the cut-on frequency matches the axial variation of
the Fourier-Bessel duct mode that has just become cut-on at that particular frequency.
Near cut-on, the Fourier-Bessel duct mode also has low axial wavenumber kmµ, similar
to the radiation mode, as can be seen in figure 5.5(b). This indicates that the cut-on
phenomenon of the Fourier-Bessel duct mode plays an important role in the origination
of the peaks in the pressure, power and radiation efficiency levels.
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Design insights

From results of the radiation modes analysis, some important acoustic insights can be
distilled for this MRI model and corresponding excitation.

• For a certain frequency, a radiation mode that is present in the velocity field does only
contribute to the radiated acoustic power if its radiation efficiency is of the same order
of magnitude as the maximum efficiency of other present components.

• For duct-like structures, the efficiency of say the nth efficient radiation mode becomes
significant above the nth cut-on frequency of the duct mode with the same Fourier
harmonic number m. In other words, the nth efficient radiation mode contributes only
to the radiated power above the cut-on frequency fmn.

• The contribution of the first radiation mode dominates the sound power spectrum.

• Just above the cut-on frequencies, there are peaks in the sound power, sound pres-
sure and radiation efficiency levels. The radiation mode shapes just above the cut-on
frequencies have a low axial wavenumber, similar to the corresponding Fourier-Bessel
duct mode that has become cut-on, which implies a close relationship.

For the designer these insights can be valuable. The results indicate that design efforts
should be focussed on the most efficient radiation mode that is excited, because this
mode dominates the acoustic response. However, the changing shape of the most efficient
mode illustrates that it will be difficult to suppress all efficient radiation mode shapes
simultaneously for all frequencies to decrease the noise. But, the major part of the acoustic
energy is radiated at the cut-on frequencies. For this simple MRI model it might be possible
to suppress the efficient radiation modes only around these frequencies to decrease the
total sound power.

By comparing the actual radiation efficiency with the efficiency of the most efficient ra-
diation mode, the designer gets an impression at what frequencies the maximum gain
for low-noise design can be achieved, namely at frequencies where the actual radiation
efficiency is near its maximum achievable value. For the model investigated here, this hap-
pens just above the cut-on frequencies, where the actual vibration distribution resembles
the most efficient radiation mode very well. Suppressing the vibration level of the most
efficient radiation mode at those frequencies while maintaining (or decreasing) the total
vibration level will result in a substantial decrease of the total sound power.

Design rules

For the simplified MRI scanner model studied here, some design rules can be formulated
from the discussion above.

• Attention should be focussed at those parts of the spectrum which determine the total
sound power. For the present model these are the parts of the spectrum just above
the cut-on frequencies. The efficient radiation modes around these frequencies should
be suppressed to decrease the total sound power.

• At frequencies where the actual radiation efficiency is near the maximum achievable
radiation efficiency, decreasing the vibration level of both the most efficient radiation
mode and in total will result in a substantial decrease of the total sound power.

Because the calculation of both the actual and maximum achievable radiation efficiency is
not restricted to axisymmetric (MRI) models, these design rules can also be valuable for
the acoustic design of other vibrating structures.
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(a) Velocity level.
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(b) Sound power level.
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(c) Sound pressure level.
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(d) Radiation efficiency. : maximum.

figure 5.6 Response spectra for a simplified MRI scanner model. : realistic distribution;
: uniform distribution.

Note that the vibration distribution used here only contains the m = 1 circumferential har-
monic. When multiple harmonics are excited, then more cut-on frequencies are present
and much more radiation modes will contribute significantly to the radiated power. This
makes the practical implementation of this design rule more complicated.

To illustrate the use of these design rules for the simplified MRI scanner model, an addi-
tional analysis was made of the Fourier BEM model with identical vibration level, but now
with a vibration distribution that is uniform along the axial coordinate direction (in con-
trast with the realistic excitation which is non-uniformly distributed). This should cause
lower values of the contribution coefficient of the most efficient radiation mode because
this vibration distribution matches less good to the most efficient radiation mode. The
acoustic response spectra for velocity, sound pressure, sound power and radiation effi-
ciency are shown in figure 5.6, and the corresponding levels are given in table 5.1. The
sound pressure here is the mean square value of the sound pressure, spatially averaged
over 40 positions inside the MRI bore. The maximum achievable radiation efficiency (i.e.
the largest radiation efficiency of the radiation modes) is also shown in figure 5.6(d).
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table 5.1 Response levels for a simplified MRI scanner model with realistic and uniform vibration.

realistic uniform

Lv [dB(A) re 10−9 m/s] 146.6 146.6
LW [dB(A) re 10−12 W] 115.8 107.1
Lp [dB(A) re 2 · 10−5 Pa] 136.9 131.7

Figure 5.6(a) shows that the velocity level is identical for both vibration distributions.
But the pressure and especially the power levels for the uniform distribution are smaller
than for the realistic vibration distribution. In figure 5.6(d), the cause for this difference is
illustrated. The uniform distribution has a much lower radiation efficiency above 250 Hz.
Near the cut-on frequencies, the radiation efficiencies are reduced with respect to their
maximum achievable values as was suggested by the design rules. Below the first cut-
on frequency, the efficiency has improved, but since the absolute value of the efficiency
is low there, this has no adverse effect on the total power level. Thus, by maintaining
the vibration level while changing the vibration distribution, the noise production of the
simplified scanner model was significantly decreased. Note that changing the vibration
distribution in a simulation is quite simple whereas it might be very difficult to accomplish
this in practice. But with the simulations, it is possible to assess the effectiveness of such
design efforts easily before trying to implement the design insights. This confirms the
usefulness of these kinds of acoustic models for designers.

Conclusions

The radiation mode analysis indicated that per circumferential harmonic, only a few radi-
ation modes are significant for the sound power radiation. As a general rule, the number
of significant radiation modes is identical to the number of cut-on duct modes. This is the
case, independently of the number of circumferential harmonics, although of course the
total number of significant modes increases with an increasing number of harmonics. With
the radiation modes analysis, the maximum achievable radiation efficiency of a vibrating
surface can also be found. This can be helpful for the designer. At frequencies where the
radiation efficiency is near its maximum achievable value, lowering the vibration level will
generally result in a progressive decrease of the noise production. At those frequencies, a
decrease in the vibration level cannot lead to an increase in the overall radiation efficiency
and hence the vibration decrease is optimally utilized.

5.4 Summary
The acoustic design objective for the MRI scanner is the reduction of the noise that is
experienced both inside the scanner by the patient, and in the close neighborhood of the
scanner by the medical staff and the MRI operator. To quantify this goal an appropriate
design objective function has to be chosen.

The radiated acoustic power is an ideal candidate for the design objective function. It is a
global measure that incorporates the noise load on both patient and medical staff. Because
there is a strong correlation between radiated power and acoustic pressure inside the MRI
scanner bore, it should not be necessary to explicitly incorporate the acoustic pressure
in the design objective function. In combination with the radiation modes formulation,
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the radiated power can be computed directly from the vibration distribution. This only
requires a single complete acoustic analysis, for each radiating geometry that is modeled.

The formulations that were developed for the acoustic design of the MRI scanner all
have their own merits and restrictions. It was shown that the baffled duct formulation
offers physical insight by its mathematical formulation. However, the geometries that can
be modeled with this formulation are restricted to cylindrical ducts with constant cross-
sections. The formulation is especially usable in for quick exploratory studies early in the
design process. The Fourier BEM formulation does not have the constant cross-section
restriction, but it does not offer direct insight into the acoustics of the problem via its
formulation. Moreover, it is computationally more expensive than the baffled duct formu-
lation. However, These disadvantages can, to a large extent, be overcome by combining
the Fourier BEM formulation with a radiation modes analysis. Nevertheless, the acoustic
insights gained from the baffled duct model can then still be valuable.

An example application of the combined Fourier BEM and radiation modes formulations
for a simplified MRI scanner model was presented. The analysis revealed that there are
typically only a few radiation modes that determine the sound power radiation of the MRI
scanner model. Therefore, the use of the radiation modes reduction technique in parame-
ter or optimization studies is feasible. Also, some important design insights resulted from
the analysis. These insights lead to the formulation of two preliminary acoustic design
rules: (i) Design efforts should be focussed at the radiation just above the cut-on frequen-
cies, because the sound power radiated at those frequencies dominates the total sound
power. (ii) When the actual radiation efficiency is near its maximum achievable value, then
the noise can be reduced by changing the vibration distribution and/or changing the vi-
bration level. The potential of these rules was illustrated with a numerical example study.
The ability to quickly perform design studies and assess the influence of design changes,
confirms the possible usefulness of these kinds of tools in a design environment.



6 Preliminary acoustic design studies for an
MRI scanner

6.1 Introduction
Practical acoustic models for MRI scanners should be detailed enough to predict the
important acoustic phenomena, and at the same time be simple enough to keep the com-
putational effort manageable. An acoustic model for the MRI scanner is a simplified repre-
sentation of a real scanner’s acoustic behavior. For each simplification that is made, there
is a tradeoff between the resulting predictive value of the acoustic model on the one hand,
and its complexity and computational speed that determine the model’s usability in the
design process on the other hand. The acoustic designer’s intuition, experience and prior
knowledge are often used for evaluating these modeling simplifications. Where sufficient
knowledge to make a fair evaluation is lacking, some preliminary design studies can aid the
designer to gain an understanding of the important acoustic characteristics.

An important acoustic characteristic of finite baffled ducts in general, and for the MRI
scanner in particular, is the occurrence of the so-called near cut-on resonances. These
were first encountered in section 5.3, where a numerical study revealed that the scan-
ner has a high radiation efficiency near some duct cut-on frequencies. This phenomenon
needs further investigation to understand the underlying physics. By using a combination of
the developed acoustic model formulations and by occasionally plunging into the model’s
mathematical formulation, the understanding of these acoustic characteristics of the MRI
scanner can be improved. This research is covered in section 6.2.

Each of the simplifications that is made to develop a usable acoustic model for the MRI
scanner introduces a modeling approximation error. The magnitude and severity of each
approximation error is different for each of the simplifications and these properties need
not be connected. An approximation error which is small in magnitude might change the
design radically, so the approximation error is severe. The opposite is also possible: a
difference in some acoustic property between model and reality might be very large, but
when the effectiveness of design changes is not influenced by that, the approximation er-
ror is not severe. For the models studied in this chapter, approximations are made for the
geometry, the vibration boundary conditions, and in the operating conditions of the scan-
ner. For each of these approximations, the magnitude and severity of the approximation
errors will be discussed.

The influence of the vibration distribution and level on the acoustic response will be briefly
discussed in section 6.3.1. The geometry that is used for the acoustic model of the MRI
scanner is another possible source of approximation errors. In practice the MRI scanner
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is not a baffled finite duct: its flanges are not infinitely large, it does not have a constant
cross-section, and it is not perfectly axisymmetric. This is discussed in section 6.3.2. An-
other possibly important aspect of the acoustic modeling of the MRI scanner is that of
the operating conditions. During normal operation a patient is lying inside the MRI scan-
ner bore which can change the acoustic response compared with the scanner without
patient. The question whether or not this has to be taken into account in design studies,
is addressed in section 6.3.4. Finally, in section 6.4, the potential of the developed tools is
demonstrated in four parameter design studies for MRI scanners with different casing and
subject to different excitations.

6.2 Near cut-on resonance phenomena in an MRI scanner
6.2.1 Maximum achievable radiation efficiency in plates and ducts

The radiation characteristics of plates [Elliott and Johnson, 1993; Cunefare and Currey,
1994] are considerably different from those of finite ducts with vibrating walls [Termeer,
1997]. This will be illustrated with some examples. Radiation modes analyses are discussed
of both a vibrating baffled finite plate and a finite duct with vibrating walls, which is a simple
representation of an MRI scanner without casing (see figure 6.1). The plate has the same
length as the MRI gradient coil system (2L = 1.455 m) and a length/width ratio of 3/2.
The finite duct model is cylindrical with an inner radius of a = 0.3405 m, an outer radius
of A = 1.0 m, a total length of 2L = 1.8 m and a vibrating section of 2l = 1.455 m. For the
duct model, the radiation modes for the circumferential Fourier harmonics 0, 1, 2, . . . 10
were computed in the calculations. Details on the radiation modes computations for the
plate can be found in Currey and Cunefare [1995].

With the radiation modes formulation it is possible to identify the maximum radiation
efficiency which can be achieved at each frequency. The maximum achievable radiation
efficiency is the largest efficiency of all radiation modes. When all vibration energy is put
into that mode (which means that the modal contribution coefficients of all other radiation
modes equal zero) then the actual radiation efficiency will be at its maximum.

The maximum achievable radiation efficiency for the finite plate (see figure 6.2(a)) in-
creases quadratically (+6 dB/oct.) for low wavenumbers. For higher wavenumbers, the
plate’s maximum efficiency increases with the square root of the frequency (+1.5 dB/oct.).
The slope change from quadratic increase to a square root increase in the graph for the
maximum radiation efficiency of the plate occurs when approximately one acoustic wave-
length fits into half of the plate’s major dimension, or mathematically f = c0/l .

2L

2l

A

x

z

a

figure 6.1 Axisymmetric duct model.
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figure 6.2 Maximum achievable radiation efficiencies. The numbers in the right graph indicate the
first cut-on frequency fm1 , for each Fourier harmonic number m.

For the duct system, the behavior is totally different (see figure 6.2(b)). Firstly, the range
of efficiencies is much larger. Secondly, an average quadratic increase (+6 dB/oct.) of
the efficiency can be observed over the whole frequency range. Thirdly, the efficiency
spectrum shows many peaks. These peaks are especially high near the cut-on frequencies
(see section 2.2.2) of the duct modes (see the dashed vertical lines in figure 6.2(b)).

6.2.2 Near cut-on resonances

The peaks in the maximum efficiency graph for the duct are caused by a mechanism that
is closely related to the cut-on mechanism for acoustic fields in infinite ducts. This be-
comes clear when the maximum efficiency of each circumferential harmonic is considered
separately. For instance, for circumferential harmonic number m = 1 (see figure 6.3), the
efficiency reaches a maximum just above the first cut-on frequency f11 of the duct. Be-
low the cut-on frequency, the axial wavenumbers k1µ for the duct modes for harmonic
m = 1 are all purely imaginary. This means that all duct modes with m = 1 are evanescent
and thus do not radiate acoustic energy out of the duct. Just above the cut-on frequency,
the first axial wavenumber k11 is real and the corresponding duct mode starts to prop-
agate and radiate acoustic energy. The transition point is the frequency where the radial
wavenumber α1µ equals the acoustic wavenumber k, for a particular value of µ. There,
the axial wavenumber k1µ = 0 and this is often referred to as duct resonance for infinite
ducts.

The origin of the peaks for the maximum efficiency of the duct cannot be explained solely
by the cut-on phenomenon, but it is closely related to it. The peaks in the efficiency
are caused by the finite length of the duct combined with a high value of some reflec-
tion coefficients at the duct’s exits for a duct mode just above its cut-on frequency. This
phenomenon will be called near cut-on resonance and its origin will be explained next.

Consider equation (2.48) in section 2.2.5, which indicates that acoustic duct modes that
are incident in the plane of the duct’s exit, are partly transmitted and partly reflected into
all other duct modes with the same circumferential harmonic. The reflection coefficient
Rmµµ describes how much of the duct mode is reflected back into the same duct mode.
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figure 6.3 Maximum radiation efficiency for the axisymmetric duct model with circumferential
harmonic number m = 1. The cut-on frequencies of the first four duct modes with µ = 1 to µ = 4
nodal circles are indicated by the dashed vertical lines.

This is called the auto-reflection coefficient here. The reflection coefficient for µ �= ν is
called the cross-reflection coefficient. For the duct modes (m, µ) = (1, 1) and (m, µ) =
(1, 2), the auto-reflection coefficients R111 and R122 are plotted in figure 6.4.

The auto-reflection coefficient of a particular duct mode is at its maximum near its cut-on
frequency. Furthermore, at the cut-on frequencies of other duct-modes with the same cir-
cumferential harmonic number, the auto-reflection coefficient is at a minimum. This means
that at the cut-on frequency of a mode, most (but not all) of the incident acoustic mode
is reflected back into itself, and the cross-reflection (to modes with a different duct mode
number ν) is relatively small. At a number of frequencies above the cut-on frequency, the
phase of the incident and reflected duct mode match very well and resonance occurs. This
causes high values for the pressure inside the duct. Because the auto-reflection coefficient
is large, but not unity, acoustic energy is still radiated out of the duct. As a consequence,
there are peaks in the radiation efficiency of the duct, because the power radiation is rela-
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figure 6.4 Magnitude (top) and phase (bottom) of the duct’s exit auto-reflection coefficients. The
thick dashed vertical line indicates the cut-on frequency of the corresponding duct mode.
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tively large (see figure 6.3 for f11 < f < f12). Further away from the cut-on frequency the
auto-reflection coefficient is much lower, so more of the acoustic duct mode is directly
transmitted and/or reflected back into modes with a different radial order ν. There will
be less pressure build-up and therefore the resonance effect will be smaller. Note that
much of these insights can be directly attributed to analyses with the baffled duct model;
it would have been impossible to obtain them from just the Fourier BEM model.

Comparing the auto-reflection coefficients, the maximum value of the of R111 is observed
to be larger than the maximum value of R122 at their respective cut-on frequencies. This
translates into a smaller near cut-on resonance for mode (m, µ) = (1, 2) in figure 6.3.

Another important observation that can be made from the maximum achievable efficiency
graphs is that a particular duct harmonic contributes little to the acoustic power radiation
below its first cut-on frequency. The maximum achievable radiation efficiency below the
first cut-on frequency is often more than 25 dB lower than the efficiencies above the
cut-on frequency (see figure 6.3). This means that a particular Fourier harmonic in the
excitation field can be neglected if the first cut-on frequency of the duct mode with that
Fourier harmonic number is above the frequency range of interest. Because of this, there is
a limit on the number of harmonics that needs to be incorporated in an acoustic analysis:
a harmonic m only needs to be incorporated if its first cut-on frequency is below the
upper limit of the frequency range, or mathematically if fm1 < fmax . This limit was used
in figure 6.2(b) where only Fourier harmonics m ≤ 10 were included in the calculations,
because their first cut-on frequencies are below 2000 Hz (see table A.2(a)).

Because of the near cut-on resonance effects, an acoustic analysis seems to be an im-
portant part of the design process of the MRI scanner. To put it more simply: vibration
levels are not representative for resulting noise levels and vice versa because the two
quantities do not relate well for finite ducts. Assessing a design by looking at one of these
quantities only is likely to result in erroneous design decisions, as will be demonstrated
in section 6.4. On the other hand, if designers are aware of the near cut-on resonance
phenomena, they might be able to take these into account in the design. When the cut-on
phenomena are manifest, the designer should avoid the coincidence of certain structural
resonances with near cut-on resonances, because coincidence results in high noise levels.
When the designer is able to shift apart (one of) these resonance frequencies, this can
lead to a significant decrease in the noise level, without even a reduction in the vibration
level. Of course, this gain is only attainable when there are distinct (resonance) peaks in
the velocity spectrum and clearly distinguishable near cut-on resonances. When the vi-
bration level spectrum does not have significant peaks, or the near cut-on resonances are
less prominent, the mismatch of resonances is less productive.

6.2.3 Conclusions with respect to design

The near cut-on resonances significantly influence the radiation efficiency of the MRI scan-
ner model with constant cross-section. Just above the cut-on frequencies of the duct, the
radiation efficiency reaches local maxima. These effects are not common to other exter-
nally radiating structures; they are typical of finite ducts. Because of these resonances,
it is important to incorporate acoustic analyses in the design process, not only for the
low frequency range as for plate-like structures, but also for the middle to high frequency
range. When both vibration resonance peaks and near cut-on resonances are manifest,
coincidence of the respective resonance frequencies should be avoided.
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6.3 Some parameters in an acoustic MRI scanner model
6.3.1 Excitation of the acoustic system by gradient coil system vibration

Structural model

Generally speaking, incorrectly imposing the vibration boundary conditions on acoustic
models may lead to significant errors in the predicted noise levels [Seybert et al., 1994].
Errors in the vibration boundary conditions may ‘propagate’ through the acoustic model
and may have serious consequences for the accuracy of the acoustic analysis. Errors in
the global level of vibration will show up linearly in the acoustic response, whereas errors
in the vibration distribution have a nonlinear effect. Therefore, it is important to have an
estimate of the nature and magnitude of errors in the structural model.

The vibration boundary conditions for the acoustic MRI scanner model can be obtained by
measurements or numerical structural (FEM) models [Kessels, 1999]. Since the acoustic
field in the MRI scanner is assumed not to influence the excitation distribution and level,
the errors in the vibration distribution and level are determined solely by errors in the
structural model or measurements, that provide the vibration data.

For a design tool, the accuracy requirements for the structural model can be relaxed. With
a design tool, it is important to be able to accurately predict structural-acoustic response
changes due to design alterations. So, the vibration levels need not be predicted strictly
accurate, as long as the vibration distributions, which cause the characteristic level changes
are correctly computed by the design tool. A full discussion on the desired accuracy of
structural MRI models and vibration measurements is outside the scope of this thesis. For
that, the reader is referred to Kessels [1999].

Multiple circumferential harmonics

An important issue related to the excitation is the number of circumferential Fourier
harmonics that should be used in the acoustic analysis. In the first place, this number
is determined by the number of circumferential harmonics in the structural analysis. A
harmonic that is not present in the vibration field does not have to be incorporated
in the acoustic analysis. In the second place, the number of harmonics can be reduced
by taking the frequency range of interest into account. In sections 5.3.2 and 6.2 it was
found that the radiation efficiency of a Fourier harmonic falls off rapidly below its cut-
on frequency. This means that there is virtually no contribution to the noise production
of a circumferential Fourier harmonic in the vibration below the first cut-on frequency
fm1 of the corresponding Fourier-Bessel duct mode. Therefore, the inaccuracy of the
boundary conditions for higher circumferential harmonics does not influence the noise
levels predicted by the acoustic models.

The importance of the near cut-on resonances is also influenced by the number of Fourier
harmonics in the excitation. For the previously presented acoustic analyses, the vibra-
tion field did only contain circumferential Fourier harmonic m = 1. In practice, this
assumption is only valid for homogeneous gradient coil systems (see appendix C). For
non-homogeneous gradient coil systems it is very likely that more Fourier harmonics are
present in the vibration field. The role of such a multiple harmonic excitation can be il-
lustrated by looking at the acoustic responses of two simplified scanners models with
constant cross-section: a model with a single Fourier harmonic excitation (m = 1) and a
model with multiple Fourier harmonics excitation (m = 0, 1, 2 . . . 10). Both models were
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figure 6.5 Example responses for an MRI scanner model with uniform vibration distribution.
: single Fourier harmonic; : multiple Fourier harmonics.

excited with a uniform vibration distribution (i.e. the same vibration amplitude along the
axial coordinate) and the total vibration level, summed over all circumferential harmonics
was kept equal. The acoustic response curves for both models are shown in figure 6.5.

When the vibration field contains more Fourier harmonics, there are also much more
duct modes that are excited and all these duct modes have their respective near cut-on
resonances. The effects of these resonances add up in the total response curves so they
become less erratic than the curves for single harmonic excitation. This is visible in the
efficiency spectra in figure 6.5(d) where the efficiency variation is smaller for the multiple
harmonics radiation model. In the response, this results in a more flat curve, although
prominent near cut-on resonances can still be present (e.g. the peaks in sound power and
sound pressure levels at 500 and 1700 Hz).

Comparing the pressure and power results, there is still a reasonable accordance between
the single and multiple harmonic analyses. This means that the simplified acoustic MRI
models are certainly insensitive to the number of Fourier harmonics in the analysis.
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Discussion

In summary, the accuracy of the acoustic analysis is partly determined by the accuracy
of the vibration boundary conditions that are imposed. The accuracy of the structural
analysis is not influenced by the acoustic analysis, because of the assumed decoupling of
structural and acoustic responses. For an acoustic design tool, absolute errors in the levels
are not of primary concern. It is far more relevant to be able to predict the changes in
the acoustic response due to design alterations. This means that changes in vibration level
and distribution should be accurately predicted for an acoustic model to be valuable for
the designer.

The close resemblance between the acoustic spectra due to single and multiple circum-
ferential Fourier harmonics excitations indicates (but does not prove) that a quiet design
resulting from studies with a single harmonic excitation will also be quiet when excited
with multiple harmonics. This is consistent with later studies in section 6.4.3. But, to be
on the safe side in general, it is recommended to incorporate all circumferential Fourier
harmonics of the vibration field which have a significant amplitude and for which the
corresponding acoustic duct mode is cut-on.

6.3.2 Geometric influences

The geometry of a simplified MRI scanner model was found to be very important to
explain some of the radiation characteristics. For the designer, it is therefore relevant to
know how the acoustics of a real scanner are influenced by geometric design changes.
Numerical studies with virtual MRI scanner prototypes are ideally suited for assessing the
geometric influences; they tend to deliver results faster and relatively less expensive than
measurements on real prototypes would give.

The developed tools are well suited for acoustic design studies of the MRI geometry.
For a number of geometric parameters (e.g. inner duct radius a or duct length 2L) the
influence on the MRI acoustics is directly visible in the mathematical formulation of the
baffled duct model. For other parameters (e.g. the scanner’s outer radius A or varying
MRI bore radius), the geometric parameter sensitivities can be obtained with parameter
studies deploying Fourier BEM models. In this way, a designer is able to link geometric
alterations to changes in the observed response. In this section, this approach was used
in some example analyses. These examples show the changes in the scanner’s acoustic
response due to modification of its geometry, from a simplified to a more realistic shape.

Numerical experiments

Four MRI scanner geometries were used to investigate the effects of geometric changes
to the MRI scanner model (see figure 6.6). To assess the influence of the outer diameter,
a baffled duct model with N = 30 Fourier-Bessel modes (see figure 6.6(a)) and a Fourier
BEM model with outer radius A = 1.0 m (see figure 6.6(b)) were compared. The differ-
ence between a sharp and curved edge at the MRI bore’s exits was investigated with an
additional Fourier BEM model with a curved edge with radius r = 0.1725 m. Finally, an
MRI model with dimensions similar to a Philips NT MRI scanner was used to assess the
influence of a smaller bore diameter in the middle combined with a moderately increasing
duct diameter towards the bore’s exits.

For the gradient coil system, a representative single harmonic vibration distribution was
used as the input for an acoustic radiation calculation (see section 5.3.1 and appendix C).
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figure 6.6 Axisymmetric models of the MRI scanner with different geometries. The thick line
represents the location of the gradient coil system which vibrates. The remainder of the scanner is
considered hard-walled.
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The vibration was prescribed at the location of the gradient coil system inside the MRI
scanner. The remainder of the scanner was considered rigid. For the model in figure 6.6(d)
the casing at the location of the gradient coil system was considered to be kinematicly
constrained to the gradient coil system and hence the casing vibration exactly follows the
gradient coil system vibration. For all these models, the mean square wall pressure, the
sound power and the radiation efficiency in the frequency range 100 − 2000 Hz were
computed. The frequency spacing was similar to the spacing described in section 5.2.4: a
logarithmic spacing with typically 4 frequencies in each third octave band. As before, the
wall pressure level is used as a measure of the acoustic response in the MRI bore, the
radiated power level is taken as a measure for the far field response, and the radiation
efficiency level is a measure for the effectiveness of the transformation of vibration energy
into acoustic energy radiated from the scanner.

Results and discussion

The wall pressure level, the sound power level and the radiation efficiency level for all four
MRI scanner models are depicted in figure 6.7. In this figure as well as in following figures,
the left graphs display the unweighted narrow-band response and the right graphs show
the A-weighted responses, integrated or averaged over third octave bands.

The influence of the outer diameter on the acoustic radiation of the gradient coil system
is negligible. This can be seen from the response curves for pressure, power and radiation
efficiency, where the curves of the baffled duct scanner and the sharp edged scanner are
almost indistinguishable. In the pressure graph, there is no visible difference, whereas in
the power and radiation efficiency graph, in the low frequency range, the baffled duct
model shows a somewhat stronger radiation. Above about 350 Hz the curves are again
identical. The 350 Hz limit is determined acoustically. It can be explained by the fact that
above this frequency, the acoustic wavelength is smaller than the scanner’s outer radius.
So, for the acoustic field inside the bore, the ‘flanges’ of the scanner are ‘experienced’ as
being infinite. This indicates that the response attributes of a baffled duct model also apply
to a simplified MRI scanner with a sufficiently large outer diameter.

The effect of changing the sharp edges at the bore’s exits into curved edges is negligibly
small as well. Some small positive and negative quantitative effects can be observed for
pressure, power and efficiency in the third octave levels. The differences for the sound
power are somewhat larger than for the sound pressure, which means that the pressure
field in the MRI bore is only marginally affected by the edge curvature. The prominent near
cut-on resonance effects are unaffected by the edge curvature change. This means that the
cut-on frequencies should still be computed with the smallest bore radius r = 0.3405 m,
not with the radius of the exit (r = 0.3405 + 0.1725 = 0.513 m). It seems that the cut-on
effects are determined by the radius of the part of the bore with constant cross-section.

The presence of a realistically shaped casing around the gradient coil system shifts the
near cut-on frequency resonances. This is caused by a decrease in the minimum radius
of the bore, which shifts the cut-on frequencies to higher frequencies. This behavior can
be illustrated by a maximum achievable radiation efficiency analysis (see section 6.2.1
for details) for the curved-edge bore and the bore with realistically shaped casing (see
figure 6.8). Clearly, the near cut-on resonance effects are present in both the curved-edge
MRI bore and the MRI with casing. The cut-on frequencies of the latter configuration are
shifted to higher values because the part of the bore with constant cross-section has a



Preliminary acoustic design studies for an MRI scanner 77

frequency [Hz]
1000 2000500250125

so
un

d
pr

es
su

re
le

ve
l[

dB
re

2
10

-5
Pa

]

100

80

60

40

frequency [Hz]
1000 2000500250125so

un
d

pr
es

su
re

le
ve

l[
dB

(A
)

(3
rd

)
re

2
10

-5
Pa

]

40

120

100

80

60

(a) Sound pressure level at the wall.
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figure 6.7 Acoustic responses for MRI scanner with different geometries. : baffled duct
scanner; : scanner without casing, sharp edge; : scanner without casing, curved edge;

: scanner with realistically shaped casing.



78 Chapter 6

frequency [Hz]

1 3 6 7 92 4 5 8 10

ra
di

at
io

n
ef

fic
ie

nc
y

[d
B

]

1000 2000500250125

5

0

25

20

15

10

(a) MRI with curved exits.

frequency [Hz]

ra
di

at
io

n
ef

fic
ie

nc
y

[d
B

]

1000 2000500250125

5

0

25

20

15

10

1 2 3 4 5 6 7 8

(b) MRI with realistically shaped casing.

figure 6.8 Maximum achievable radiation efficiencies for the MRI models. The numbers in the graphs
indicate the first cut-on frequency for each Fourier harmonic number m. The minimum radius of
the MRI bore’s (a = 0.34 m and a = 0.28 m, respectively, for the left and right graph) was used to
compute the respective cut-on frequencies.

smaller radius. Also, a decrease of the efficiency is found above the first cut-on frequency
for Fourier harmonic m = 7, which was not present in the other models. Moreover, the
near cut-on resonance effects for the MRI with casing are less prominent than for the
bore with curved edges. The resonance peaks are less sharp and much lower. Comparing
the results in figure 6.8(a) with the results for the sharp edged bore in figure 6.2(b) reveals
that the curved edges at the bore’s exits in comparison with sharp edges also decrease
the near cut-on resonance peaks.

From the observed changes in the maximum achievable efficiency spectra, it is assumed
that a gradually changing bore radius will cause a decrease in the prominence of the near
cut-on resonances. To confirm this assertion, a study was made of an MRI model for which
the bore geometry is conical towards both exits (see figure 6.9(a)). The bore’s minimum
and maximum radius were taken identical to the MRI model with realistic casing, but the
latter model does not have a constant radius change per unit length.

For the conical MRI scanner model, the maximum achievable radiation efficiency was
computed (see figure 6.9(b)). The peaks in the resulting maximum efficiency spectrum
are much lower than for the other MRI scanner models. Furthermore, the peaks in the
spectrum do not correlate with the cut-on frequencies based on the bore’s minimum
radius. Thirdly, the global steepness of the spectrum is smaller. It seems that the MRI bore
should have a part with constant radius for significant resonances to occur.

Conclusions with respect to design

From the presented analyses, some important conclusions for the MRI scanner’s radiation
characteristics can be drawn. Changing the geometry of the bore influences the near cut-
on resonances significantly. The radius of the part of the bore with constant cross-section
determines the cut-on frequencies. Also, a gradually changing bore radius decreases the
height and sharpness of the resonance peaks. Hence, the geometry of the bore casing
might provide the acoustic engineer with some design freedom to decrease the possible
importance of the near cut-on resonances in the acoustic response of an MRI scanner.
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figure 6.9 MRI scanner with a two-sided conical bore.

6.3.3 The acoustic influence of the scanner room

In the previous section, it was shown that changes to the geometry of the MRI scanner
can have a considerable influence on its acoustic radiation characteristics. But besides
the geometry of the scanner itself, the geometry and acoustic behavior of its working
environment can be of influence.

The direct working environment of the scanner is the room in which the scanner is lo-
cated. The room dimensions are normally larger than the maximum acoustic wavelength
of the noise. This means that the sound power radiation of the scanner is not expected to
be significantly influenced by the room properties. It is recognized that for low frequen-
cies, standing acoustic waves might play a role in the pressure distribution in the room,
but the low frequency components of the radiation are only of minor significance for the
total sound production. Therefore, it is not necessary to incorporate the environment in
the MRI scanner model. For the acoustic MRI scanner design, it is sufficient to calculate
the sound production of the scanner in free space. This is fortunate, because for design
purposes it would be impractical or even impossible to account for the room conditions,
since the scanner rooms are very different from hospital to hospital.

6.3.4 The acoustic influence of a patient in an MRI scanner

Another important operating condition for the scanner is the presence of a patient in the
scanner bore, which can possibly influence its radiation characteristics. If the presence
of the patient would have significant effects, then this should be accounted for in the
acoustic design of the scanner. Whether and to what extent the presence of a patient in
the scanner affects the design of the scanner is the topic of the remainder of this section.
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Modeling

Fourier BEM model. To assess the influence of the presence of a patient in the MRI
bore on the acoustic response of the scanner, a Fourier BEM model of the scanner and
patient was made in bArd [1998]. For the scanner model, the geometry with realistically
shaped casing was chosen (see figure 6.10). This geometry is closest to an MRI scanner’s
geometry that is in use in practice. The patient geometries were derived from realistic
data [Burkhard and Sachs, 1975; Nagel, 1988], but because of the use of Fourier BEM,
the geometry of the patient was made axisymmetric. A representative single harmonic
vibration distribution was chosen as excitation of the acoustic model (see section 5.3.1
and appendix C).

Acoustic impedance of the patient. It proved to be difficult to build an acoustic model
for a patient. Because of the total lack of appropriate data, the acoustic properties of the
patient could only be roughly estimated. Burkhard and Sachs [1975] have found negligible
influence of skin impedance on the acoustic response in the assessment of hearing aids
(“ . . . Being hard headed does not affect significantly the sound . . . ”). Therefore, the
skin was modeled as acoustically hard. However, the acoustic properties of clothing could
possibly influence the acoustic response of the MRI scanner. From concert hall acoustics
studies [e.g. Beranek, 1969], the resistive behavior of clothing could be roughly approx-
imated. The reactive properties of the clothing seem to be uninvestigated. Therefore, a
simple and generally usable expression of the absorption behavior of patient clothing as a
function of frequency is not available and is unlikely to exist. The impedance behavior of
the clothing depends on a large number of parameters: on frequency, on the type of cloth-
ing, on the clothing thickness, on the angle of incidence of the acoustic field, etc. The task
to develop a reliable acoustic model for the patient’s clothing is likely to equal the amount
of work required to build an acoustic MRI scanner model and is therefore clearly outside
the scope of this thesis. As an alternative approach, parameter studies were chosen to
assess the influence of clothing absorption.

In studies of concert hall acoustics, Beranek [1969] found that the absorption coefficient α
of audience ranges from α = 0.39−0.94 in the frequency range of interest. An expression
for the real part of the impedance of the clothing can be derived from these data as will
be shown next.
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figure 6.10 Axisymmetric MRI scanner model. The thick line represents the location of the realis-
tically shaped casing that is assumed to vibrate. The remainder of the casing is considered rigid.
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If plane waves in the air impinge in the normal direction upon a plane (in this case cloth-
ing) of specific impedance zp , reflection will take place; the ratio between incident wave
pressure pi and reflected wave pressure pr is defined as [e.g. Zwikker and Kosten, 1949]

r = pr

pi
= zp − z0

zp + z0
, (6.1)

with z0 as the specific impedance of the air. This ratio is called the complex reflection
coefficient. The energy absorption coefficient is then defined as

α = 1 − |r|2 = 1 −
∣∣∣∣zp − z0

zp + z0

∣∣∣∣
2

. (6.2)

Rewriting this yields

|zp − z0| = |zp + z0|
√

1 − α. (6.3)

If zp is assumed to be purely real and its value is larger than z0, the following expression
for impedance zp can be derived:

zp = 1 + √
1 − α

1 − √
1 − α

z0 . (6.4)

The specific impedance of air is defined as

z0 ≡ ρ0c0, (6.5)

with ρ0 = 1.21 kg/m3 as the air density and c0 = 343 m/s as the speed of sound in
air. With these the resistive part of the clothing impedance ranges from zp ≈ 700 −
3400 Pa s m−1. When the clothing absorption coefficient equals one, i.e. total absorption,
the impedance of the clothing is identical to the specific impedance of air: zp = z0 =
415 Pa s m−1. It should be stressed that these values are very rough estimates, since they
only apply to normal incidence of plane waves and the possibly complex nature of the
clothing impedance was totally disregarded.

Numerical experiments

Two series of numerical experiments were performed to assess the influence on the
acoustic field of the presence of a patient in the MRI scanner. In the first series, the
influence of the patient’s position was assessed (Experiment 1). In the second series, the
influence of the impedance of the patient’s clothing was investigated (Experiment 2).

Experiment 1: patient position. The effect of the patient’s position in the bore was inves-
tigated by two computations: with the patient’s head located in the center of the scanner
(position A), and with the patient’s geometrical center in the center of the scanner (posi-
tion B) (see figure 6.11).

The position of the patient relative to the scanner depends on the part of the patient’s
body that needs to be imaged. The imaging section of the scanner is located at the isocen-
ter of the bore. Thus, the patient position A relative to the scanner in figure 6.11(a) is
typical of head imaging and the patient position B in figure 6.11(b) is typical of lower
abdominal imaging. The patient was modeled as acoustically hard in both simulations.
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figure 6.11 Axisymmetric models of MRI scanner with patient at different positions in the bore.

Experiment 2: patient impedance. To assess the influence of the patient’s clothing impe-
dance on the acoustic field radiated by the scanner, the clothing impedance was varied.
Four different values (i.e. zp = 415, 1500, 3000, and ∞ Pa s m−1) were taken for the
clothing impedance, all for a patient in position A in the scanner. The impedance bound-
ary condition was applied to the whole patient, and the impedance was assumed to be
independent of the frequency. The impedance value zp = ∞ corresponds to a bound-
ary being acoustically hard. The influence will be assessed from the results for the mean
square value of the acoustic pressure at the wall of the scanner, from the radiated power,
and from the radiation efficiency.

Results and discussion

Experiment 1: patient position. The results for the mean square sound pressure (spa-
tially averaged at the wall), the sound power and the radiation efficiency as a function
of frequency for varying patient’s position in the scanner are shown in figure 6.12. The
left graphs display the unweighted narrow-band responses and the right graphs show the
A-weighted responses, integrated or averaged over third octave bands.

Above 500 Hz, the third octave levels for power and radiation efficiency for the MRI scan-
ner with patient do not change very much compared to the same quantities for the scan-
ner without patient. The radiation below 200 Hz is increased by the patient’s presence.
Between 200 and 500 Hz the differences are relatively small. The wall sound pressure
spectra exhibit the same behavior as the sound power spectra, although the differences
are larger. This is not surprising, as the wall pressure is a local acoustic quantity and is
likely to be influenced more by local changes. For low frequencies there is also consider-
able difference between the two models with the patient in position A and B, respectively.
For the empty scanner, the cut-on frequencies for the first four duct modes for harmonic
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(a) Sound pressure level at the wall.
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(b) Radiated sound power level.
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(c) Radiation efficiency level.

figure 6.12 Acoustic responses for MRI scanner without and with an acoustically hard patient.
: empty scanner; scanner with patient, : position A; : position B.
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m = 1 are: f1µ = 296, 855, 1368, and 1877 Hz (see table A.2(a)). In the narrow-band
spectrum for the radiation efficiency level for the scanner without patient, the spectrum
peaks just above these frequencies. The presence of a patient seems to shift the cut-on
frequencies downwards, indicated by the down-shift of the radiation efficiency peaks (see
figure 6.12(c), left). The effect of this down-shift of cut-on frequencies is also visible in the
power and pressure responses. The third octave levels show that this effect is strongest
for low frequencies.

Experiment 2: patient impedance. The mean square sound pressure averaged over the
wall, the sound power, and the radiation efficiency as a function of frequency, for varying
impedance of the patient’s clothing, are shown in figure 6.13.

Not surprisingly, the effect of a decreased clothing impedance is a decrease and smoothen-
ing of the acoustic spectra. With decreasing impedance, the clothing increasingly absorbs
more of the acoustic energy and the net radiated acoustic energy decreases. But the ef-
fects are quite moderate and even less than for the analyses with varying patient positions.

A consequence of increasing the clothing impedance is that the down-shift of the cut-on
frequencies observed in Experiment 1 seems to be canceled out. The total effect of the
presence of a patient with absorbing clothing in the scanner is a very moderate decrease of
sound power and pressure levels, and it decreases the radiation efficiencies, especially near
the cut-on frequencies. These findings are experimentally confirmed by the research of
Hedeen and Edelstein [1997]. Hence, the influence of the patient’s presence is noticeable
but does not change the typical radiation characteristics.

Conclusions with respect to design

The influence on the acoustic response of the presence of a patient inside an MRI scan-
ner was assessed. Simulations were performed for several configurations using acoustic
Fourier BEM models. The influence on the acoustic field of the patient’s position and
patient’s clothing impedance were investigated in two series of numerical studies. The
simulations showed that very moderate quantitative effects can be expected from the
presence of a patient in the scanner, but showed no significant influence on the typical ra-
diation characteristics. It is therefore unlikely that significantly different designs will result
from an acoustic model for the MRI scanner with or without a patient. This means for the
effectiveness as a design tool, that not incorporating the patient in an acoustic model of
the MRI scanner has no practical consequences.

6.4 Design studies for an MRI scanner with layered gradient coil
system
To demonstrate the potential of the developed acoustic tools for the MRI scanner, four
parameter studies ware performed for different MRI scanner models. The models differed
with respect to the geometry of the bore and the number of circumferential harmonics in
the excitation. The model configurations are shown in table 6.1. With these models, the
design influence of multiple circumferential harmonics in the excitation and the influence
of the casing shape were investigated.

To compute the vibration excitation in these studies, a layered finite element model of
the gradient coil system was used. This finite element model was excited with a repre-
sentative Lorentz force distribution (identical to the one used in section 5.3.1 and the
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figure 6.13 Acoustic response for MRI scanner for different absorption characteristics for the
patient (position A). : empty scanner; scanner with patient, : zp = ∞; : zp = 3000;

: zp = 1500; : zp = z0 = 415.
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table 6.1 Model configurations for MRI scanner design studies.

study 1 study 2 study 3 study 4
# harmonics single single multiple multiple
casing shape none realistic none realistic

following sections, see appendix C). The response of the FEM model was computed with
the SATURN package [Kessels et al., 1998]. In SATURN it is possible to perform automatic
parameter studies. This feature was used here to assess the influence of thicknesses of
the different material layers in the gradient coil system.

A layered gradient coil system was modeled consisting of five layers with different material
properties (see figure 6.14): a conductor layer (copper-epoxy composite, thickness t1), a
damping layer (epoxy, thickness t2), a undamped stiff layer (glass, thickness t3), and again
a damping layer (epoxy, thickness t4) and a conductor layer (copper-epoxy composite,
thickness t5). The properties of the layer materials can be found in appendix C. The
gradient coil system build-up and materials were chosen to resemble a realistic gradient
coil system.

The total thickness of the gradient coil system was kept constant ttot = 100 mm in
the parameter study. The thicknesses of the conductor layers were also kept constant:
t1 = t5 = 10 mm. Then the thickness of the first damping layer and the stiff layer were
varied: t2 = 5 . . . 35 mm and t3 = 5 . . .35 mm, respectively. The thicknesses were both
increased in seven steps of 5 mm, making a total of 49 different gradient coil system
designs. With constant thicknesses t1, t5, and ttot, the fourth (damping) layer thickness t4
is a dependent variable: t4 = ttot − ∑

i=1,2,3,5 ti = 10 . . .70 mm.

The acoustic response of the MRI models was computed with the program bArd [1998] af-
ter every structural analysis of the gradient coil system. If the radiated sound power would
be the only interesting acoustic quantity, then the radiation modes reduction technique
could be used here, because the shape of the radiating surface is not influenced by the
parameter variations (see also chapter 4). This significantly speeds up the acoustic anal-
ysis part of the parameter study and hence speeds up the total parameter design study.

2L

t3t2
ttot

a

A
epoxy layer

conductor

rigid support

casing

t5

t1

glass layer
2l

5
4
3
2
1

t4

radiating surface

figure 6.14 MRI model with layered gradient coil system, without casing.
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However, an additional objective of these studies was to further evaluate the adequacy
of sound power compared to sound pressure in the bore as a design objective function.
Therefore, the radiation modes formulation could not be used for all studies.

6.4.1 Study 1: MRI scanner with single harmonic excitation, without casing

For an acoustic analysis of the scanner, the (radiating) geometry of the scanner has to
be defined. For the first design study, an MRI scanner without bore casing was modeled.
For this model, the gradient coil system is in direct contact with the acoustic fluid and
therefore radiates sound directly into the bore of the scanner. The remainder of the
scanner was assumed to be rigid. For the excitation, only circumferential harmonic m = 1
was used. This configuration is similar to the MRI model with sharp edges that was used
in section 6.3.2 (see figure 6.6(b)).

The response surfaces that result from this design study, for the velocity level (Lv re
10−9 m/s, mean square value, spatially averaged), the sound power level (LW re 10−12 W),
and the sound pressure level (Lp re 2 · 10−5 Pa, mean square value, spatially averaged
over 40 field points in the scanner bore) are depicted in figure 6.15. A first glance at the
response surfaces reveals that the spread in the velocity levels is only 6 dB(A), whereas the
spread for the power and pressure responses is almost 15 dB(A). A comparison between
the response surfaces for velocity level and sound power level shows that they do not
display similar parameter sensitivities. This means that gradient coil system designs with
low vibration levels do not necessarily coincide with designs that have low sound power
levels. The cause of this poor correlation can be explained by looking at the response
spectra of two designs: a design with low power level (design 1P) and a design with low
velocity level (design 1v). The frequency spectra for these designs are shown in figure 6.16.
The dimensions and total level values for these designs can be found in table 6.2, which
presents a summary of results for all four design studies.

The thinner stiffness layer t3 of design 1v results in a decrease in velocity level, com-
bined with a lowering of the eigenfrequencies in figure 6.16(a). A consequence of this
frequency shift is that the eigenfrequencies are located closer to the cut-on frequencies of
the bore. This results in an increased power and pressure level at these frequencies (see
figures 6.16(b) and 6.16(c)).
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figure 6.15 Response surfaces for MRI scanner parameter study 1: no casing and single circumfer-
ential harmonic excitation.



88 Chapter 6

frequency [Hz]
1000 2000500250125

80

90

100

110

120

130

ve
lo

ci
ty

le
ve

l[
dB

re
10

-9
m

/s
]

(a) Velocity level.

frequency [Hz]
1000 2000500250125

0

100

so
un

d
po

w
er

le
ve

l[
dB

re
10

-1
2

W
]

80

60

40

20

(b) Sound power level

frequency [Hz]
1000 2000500250125

so
un

d
pr

es
su

re
le

ve
l[

dB
re

2
10

-5
Pa

] 120

20

100

80

60

40

(c) Sound pressure level.

frequency [Hz]
1000 2000500250125

-60

-40

-20

0

20

ra
di

at
io

n
ef

fic
ie

nc
y

[d
B

]

(d) Radiation efficiency. : maximum.

figure 6.16 Response curves for MRI scanner models with different gradient coil system designs,
with single circumferential harmonic excitation, without casing. : design 1P, : design 1v.

The correlation between sound power and sound pressure level is very good. Apart from
the levels, the pressure and power response surfaces evince almost identical behavior. Also
for designs 1P and 1v, the frequency spectra of sound power and sound pressure correlate
well. This means that a low sound power design is also a low sound pressure design here.
For this study, this means that the pressure results supply no additional information for
the designer and that the power results suffice to evaluate the noise production of a
design. This close agreement makes the pressure calculations superfluous, and thus it
is possible to decrease the computational effort for the acoustic analyses by using the
radiation modes reduction technique as described in section 4.3. For the present study,
this would mean that the computation time for the acoustic analyses would be reduced
by a factor of almost 48 (a single acoustic analysis plus an eigenvalue analysis, instead of
49 complete acoustic analyses). The calculation time for the power, based on the modal
contribution coefficients and modal radiation efficiencies, is negligibly small.
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6.4.2 Study 2: MRI scanner with single harmonic excitation and realistic casing

A second design study was performed, now with an acoustic MRI scanner model with
realistically shaped casing. The radiating part of the geometry of the scanner was chosen
as the part of the casing that is the closest to the gradient coil system (see figure 6.17).
The remainder of the casing is considered rigid. For the excitation, only circumferential
Fourier harmonic m = 1 was used. Similar to the analysis in section 6.3.2, the computed
gradient coil system vibration is directly imposed on the radiating part of the casing. This
configuration is represents a direct kinematic coupling of the gradient coil system and
the casing in the bore. In a real MRI scanner, the coupling between gradient coil system
and casing is considerably more complex, but can, as a first approximation, be modeled as
outlined here. The direct coupling was chosen to facilitate the comparison of the vibration
levels between the design studies without and with casing, respectively.

The response surfaces that result from the design study with this MRI scanner model,
for the velocity level (Lv re 10−9 m/s, mean square value, spatially averaged), the sound
power level (LW re 10−12 W), and the sound pressure level (Lp re 2 · 10−5 Pa, mean
square value, spatially averaged over 40 field points in the scanner bore) are depicted in
figure 6.18. Again, as for the MRI model without casing, the correspondence between the
velocity level and sound power level is poor, and the correlation between sound power
and sound pressure level is rather good. Comparing the response surfaces for this MRI
model and the model without casing reveals that the optimum design in terms of power
or pressure is different. This means that the most quiet design for a gradient coil system in
a scanner without casing might not be the optimum design for a scanner with casing. Note
that the design with the lowest sound power level (design 2P, t2 = 25 mm, t3 = 30 mm)
is not the exactly the same as the design with the lowest pressure value (design 2p,
t2 = t3 = 35 mm). However, both designs lie in the same region of optimum designs, and
the differences between the sound pressure and sound power values of designs 2p and
2P are relatively small (< 1 dB). Hence, there is no preference for one of these optima,
judging from only these data.

To understand why a quiet gradient coil system design for the scanner without casing
is not optimal for the scanner with casing, a closer look at the frequency responses is
required. For design 2P and the design with the lowest velocity level, design 2v, the levels

2L

a

A

radiating surface

casing

figure 6.17 MRI model with layered gradient coil system (not shown) and realistically shaped casing.
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figure 6.18 Response surfaces for MRI scanner parameter study 2: with realistically shaped casing
and single circumferential harmonic excitation.

are given in table 6.2, and the frequency response curves are given in figure 6.19. Note
that design 2v is structurally equivalent to design 1v.

The most quiet gradient coil system designs, in this study and in the study of the scanner
without casing, have in common that the peaks in the velocity level do not coincide with
near cut-on resonances of the bore. But, the cut-on frequencies for the model without
casing and the model with casing are different. Because of the smaller minimum bore radius
for the latter model, its cut-on frequencies are higher. Comparing the velocity level spectra
in figures 6.16(a) and 6.19(a) shows that the velocity spectrum of the optimal design for
the scanner with casing is also shifted towards higher frequencies. This is accomplished by
increasing the thickness of layer 3, the stiff glass layer.

Comparing the results for the scanner without and with casing, it is observed that the
response surfaces for sound power levels and sound pressure levels for the scanner with
casing are lower. This means that the same amount of vibrational energy results in lower
production of acoustic energy for the scanner with casing. A justifiable conclusion here
is that the scanner with casing may be about 6 dB(A) quieter, for single circumferential
harmonic excitation, because of its shape.

6.4.3 Studies 3 & 4: MRI scanner design for multiple harmonics excitation without
and with casing

The design studies of the previous sections were carried out with a single circumferential
harmonic (m = 1) excitation. For that type of excitation, the optimum gradient coil system
designs are characterized by a mismatch between peaks in the velocity level spectrum
and near cut-on resonance peaks in the radiation efficiency spectrum. But, the study in
section 6.3.1 showed that for multiple circumferential harmonics excitation, the effect
of the cut-on resonances becomes smaller. Therefore, it is interesting to look whether
multiple harmonic excitation will change the outcome of the design studies. This aspect
will be investigated here.

For the design studies with multiple circumferential harmonics excitation, again both an
acoustic MRI model without casing (study 3) and a model with casing (study 4) were used.
These models are identical to the models in design studies 1 and 2, respectively, except
for the excitation. For the excitation, the representative Lorentz force distribution (see
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(a) Velocity level.
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figure 6.19 Response curves for MRI scanner models with different gradient coil system designs,
with single circumferential harmonic and realistically shaped casing. : design 2P; : design
2v.

appendix C) was applied not only for the circumferential harmonic m = 1, but for the
harmonics m = 0, 1, . . . 5. The resulting vibration distribution was again computed with
the SATURN package [Kessels et al., 1998].

The previous parameter studies showed that sound power and sound pressure respond
similarly to design alterations, and are therefore interchangeable as design objective func-
tions. For practical reasons, it was chosen to assess the acoustic performance of the
scanner models with the radiated acoustic power only, because this enabled the use of
the radiation modes reduction technique for the acoustic analyses (see section 4.3). This
drastically accelerated the acoustic calculations of the design studies.

The response surfaces for the velocity level and sound power level of both the MRI scan-
ner models without and with casing, are displayed in figure 6.20. Comparing the power
response surfaces, it is apparent that the geometry of the acoustic MRI scanner model
is still of influence on the acoustic response: the optimum power design for the scan-
ner without casing is not the same as the optimum design for the scanner with casing.



92 Chapter 6

10

20

30
10

20
30

152

154

156

t
3

[mm]t
2

[mm]

ve
lo

ci
ty

[d
B

(A
)]

10

20

30
10

20
30

110

120

130

t
3

[mm]t
2

[mm]

po
w

er
[d

B
(A

)]
(a) MRI scanner model without casing.
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(b) MRI scanner model with casing.

figure 6.20 Response surfaces for MRI scanner parameter studies 3 & 4: multiple circumferential
harmonics excitation.

table 6.2 Response values for optimum MRI designs from the design studies. the numbers 1 to 4
denote the design study number, and ‘P’ and ‘v’ denote an optimum with respect to sound power
level and velocity level, respectively.

1P 1v 2P 2v 3P 3v 4P 4v
t2 [mm] 25.0 35.0 25.0 35.0 25.0 35.0 25.0 35.0
t3 [mm] 15.0 5.0 30.0 5.0 15.0 5.0 30.0 5.0
Lv [dB(A) re 10−9 m/s] 146.7 144.9 147.8 144.9 153.8 152.5 154.4 152.5
LW [dB(A) re 10−12 W] 114.4 120.9 108.5 114.1 120.5 125.2 119.8 124.7
Lp [dB(A) re 2 · 10−5 Pa] 136.3 140.7 128.7 132.9

Compared with the response surfaces for the single harmonic excitation in figures 6.15
and 6.18, the levels have increased, and the shape of the surfaces is flattened. But still, the
response surface shapes for multiple harmonics excitation resemble the shapes for single
harmonic excitation. This means that the optimum designs for design studies 3 and 4 are
the same as for design studies 1 and 2, respectively (see table 6.2). Because the response
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surface shapes have flattened, the level differences between optimum and ‘worst-case’
structural and acoustic designs have decreased: 3 dB for the velocity level and 9 dB for the
sound power level. Note that in contrast with single harmonic excitation, the MRI scanner
with casing in these studies is not intrinsically quieter than the scanner without casing.

Comparison of the response spectra for each of the scanners in figure 6.21 reveals that
they are smoother than their single harmonic excitation counterparts. This is a conse-
quence of the increased number of near cut-on resonances, due to the increased number
of circumferential harmonics in the excitation. The peaks in the individual harmonic spec-
tra might still be relatively high, but in the summed total spectra, the height of the peaks
becomes less pronounced, which results in smoother spectra.

The smoothening of the acoustic spectra does not imply that the near cut-on resonances
play a less important role for scanners subject to multiple harmonics excitation. This
can be illustrated by the remarkable difference between the acoustic response of design
4P and 4v just above cut-on frequency f11 = 360Hz (see figure 6.21). For design 4P,
the velocity level has a clear peak, which does not translate into a peak for the sound
power level, because of the low radiation efficiency levels near that frequency. Design
4v displays the opposite behavior: the velocity level is rather smooth, but the peak in the
radiation efficiency translates into a high sound pressure peak above 360 Hz. Paradoxically,
a peak in the total velocity level, coinciding with a cut-on frequency does not lead to a
sound power peak and on the other hand, a smooth velocity level leads to a peak in the
sound power. This paradox can be explained by looking at the response levels for the
individual harmonics in figure 6.22. These figures clearly show that the total level spectra
are build up from the contributions of the individual circumferential harmonics. For design
4P, the velocity level peak at 360 Hz is caused by the circumferential harmonic m = 0,
which obviously cannot couple to the first cut-on frequency f11 for the m = 1 Fourier
duct mode. On the other hand, for design 4v, there is a peak in the velocity level for
harmonic m = 1 near cut-on frequency f11, which translates in a peak for both the sound
power level and radiation efficiency level. There is also a strong coupling with the f02 and
f12 cut-on frequencies (see also table A.2(b)). This indicates that a mismatch between
structural and near cut-on resonances still characterizes an optimal acoustic design, but
it also indicates that the mismatch should be effectuated at the level of the individual
circumferential harmonics, and not at the summed levels.

It is recognized that a resonance mismatch will probably be easier to accomplish for single
harmonic excitation than for multiple harmonics excitation, since the number of structural
and near cut-on resonances is much lower for single harmonic excitation. This is probably
the reason why the level difference between optimum and ‘worst-case’ acoustic designs
for single harmonic excitation are larger than for multiple harmonics excitation: 15 dB(A)
versus 9 dB(A). Still, for the latter case, the spread is very significant from a designer’s
point of view.

6.4.4 Conclusions with respect to design

The optimum design of the gradient coil system was shown to depend on the geometry of
the radiating surface of the scanner. When the radiating geometry is changed, so will the
structural composition of the optimum design. The optimum designs for the vibration level
do not necessarily coincide with optimum designs for noise levels, so the vibration level is
certainly not a suitable acoustic design objective function. The correspondence between
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(a) Velocity level (without casing).
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(b) Velocity level (with casing).

frequency [Hz]
1000 2000500250125

0

100

so
un

d
po

w
er

le
ve

l[
dB

re
10

-1
2

W
]

80

60

40

20

(c) Sound power level (without casing).
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(d) Sound power level (with casing).
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figure 6.21 Response curves for MRI scanner models with different gradient coil system designs
(multiple harmonics excitation). Left graphs: scanner without casing, : design 3P; : design
3v. Right graphs: scanner with casing, : design 4P; : design 4v.
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(a) Velocity level (design 4P).
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(b) Velocity level (design 4v).
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(c) Sound power level (design 4P).
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(d) Sound power level (design 4v).

figure 6.22 Response levels per circumferential harmonic number. : total; : m = 0;
: m = 1; : m = 2.

the response surfaces of sound power and sound pressure levels was found to be good.
Therefore, pressure calculations are not necessary to assess the acoustic performance in
a design study. This enables the use of the radiation modes reduction technique, which
significantly reduces the computation time for the acoustic design analyses.

For the design studies with both single and multiple Fourier harmonics excitation, the cut-
on resonance phenomena play an important role. In these studies, acoustically optimal
designs are characterized by a mismatch between vibration spectrum peaks and near cut-
on resonances. This mismatch is effectuated at the level of the individual circumferential
harmonics, and not at the level of the summed-up responses. It seems that this mismatch is
harder to accomplish for multiple harmonics excitation because of the increased number
of both structural and near cut-on resonances, with respect to single harmonic excitation.
Nevertheless, a significant noise reduction with respect to the ‘worst-case’ design seems
to be achievable.
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6.5 Summary
Important for the sound radiation characteristics of the axisymmetric MRI scanner models
are the so-called near cut-on resonances. Just above the cut-on frequency of a duct mode,
a build-up acoustic pressure associated with that particular mode inside the MRI bore may
occur, because of high auto-reflection coefficients at the bore’s exits. This may result in a
significantly increased power radiation just above the cut-on frequencies of the Fourier-
Bessel duct modes. Below the first cut-on frequency, the radiation efficiency of a duct
mode falls off very rapidly, so its contribution to the noise production can be neglected.

The geometry of the MRI scanner bore seems to be an important factor for the acoustic
design. The bore’s minimum radius was found to determine the location of the cut-on
frequencies. Moreover, a gradually changing cross-sectional diameter along the axis of
symmetry seems to diminish the maximum achievable radiation efficiency peaks due to
the near cut-on resonances. The presence of a patient in the MRI scanner only has a very
small acoustic influence, and it is therefore unnecessary for design purposes to model a
patient in the scanner.

Four design studies, for an MRI scanner model with different bore geometries and dif-
ferent excitations, were performed to establish a suitable design objective function and
to investigate the importance of the near cut-on resonances for the acoustic design. The
studies showed that the sound pressure level in the bore and the radiated sound power
level respond similarly to design changes. This means that the radiated sound power is
suitable and sufficient as a design objective function for the MRI scanner. This is fortu-
nate because it enables the use of the radiation modes reduction technique, in order
to significantly speed up the acoustic analyses in design studies. The design studies also
demonstrated that, compared to the ‘worst-case’ designs, a significant noise reduction of
about 5 − 10 dB(A) can be accomplished by mismatching structural vibration level peaks
and near cut-on resonances, independently of the total vibration level. This indicates that
the reduction of near cut-on resonances is very relevant for the acoustic design of MRI
scanners. The prominence of these resonances can be decreased by changing the geome-
try of the bore and by altering the structural composition of the gradient coil system and
the coupling with the surrounding casing.



7 Conclusions, discussion and
recommendations

The development of acoustic tools for axisymmetric structures and their application for
the design of MRI scanners was the main objective of the research that is presented
in this thesis. From the acoustic designer’s point of view, an essential requirement for
these tools is that they accurately and efficiently predict the relevant acoustic response
changes due to design alterations. Also, the tools should be sufficiently fast to ensure that
design studies with these tools are feasible in an industrial environment. In this context,
the research activities presented in this thesis will be summarized and discussed next. In
addition, recommendations will be given which might broaden and enhance the application
of the presented research results.

7.1 Conclusions and discussion
7.1.1 Baffled duct formulation

A semi-analytical model was developed to investigate the typical acoustic characteristics
of a finite duct with vibrating walls and infinite flanges, which is a simplification of an MRI
scanner. With this model , the acoustic radiation of a baffled finite duct is mathematically
described by a convolution integral of the response of a source in a hard-walled finite duct
and the vibration distribution at the wall. The efficiency of the method was increased by
developing a new algorithm to compute the reflection coefficients that describe boundary
conditions at the duct’s exits.

The semi-analytical baffled duct model demonstrates the relationship of the MRI noise
problem with duct acoustics theory. Typical infinite duct acoustic phenomena such as
mode cut-on could also be observed in the MRI scanner models. Resonances are intro-
duced in the duct just above the cut-on frequencies.These so-called near cut-on reso-
nances, are caused by the impedance transition at the duct’s exits, and explain the peak
values of sound pressure, sound power and radiation efficiency that can be observed for
ducts with constant cross-section. Hence this model proved to be valuable to gain insight
into the important radiation characteristics of finite duct-like structures.

Because of its superior efficiency compared to element based formulations, the baffled
duct model offers designers the opportunity to quickly obtain a rough impression of the
important parameters, such as the scanner dimensions, in the MRI noise problem, and to
obtain a global impression of the acoustic responses in the design space. However, the
application of the model for detailed design studies is limited to MRI scanner geometries
with constant cross-section. Because of practical and ergonomical considerations, it is
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unlikely that such MRI scanners will be developed in the future. Hence, the application of
the baffled duct formulation for MRI scanner design is restricted to exploratory design
studies.

7.1.2 Fourier boundary element formulation

A novel Fourier boundary element method (Fourier BEM) was developed to analyze the
acoustic radiation of axisymmetric structures. This method enables the acoustic analy-
sis of MRI scanner geometries with non-constant bore diameter. With this method, the
non-axisymmetric acoustic variables are described with Fourier series in circumferential
direction. Mathematically, the three dimensional radiation problem is decomposed into a
series of ‘quasi-axisymmetric’ radiation problems, one for each harmonic in the Fourier
series expansions of the acoustic variables. In this way, the dimensionality of the problem
is reduced by one. Compared with a 3-dimensional BEM formulations, the speedup factor
that is achieved with the Fourier BEM is 50 to 200, depending on the problem size.

The novelty in the Fourier BEM formulation that was developed here is the algorithm that
computes the Fourier integrals in circumferential direction. Traditionally this integration
is performed separately for each Fourier harmonic. To decrease the computational effort
for this most time-consuming step in the formulation, a new algorithm was developed,
which computes the Fourier integrals simultaneously with an FFT algorithm. The speedup
that is accomplished by deploying this algorithm is especially notable when the Fourier
series of the boundary conditions consists of a lot of terms.

The efficiency of the Fourier BEM method makes it possible to apply it in all stages of
the design process of the MRI scanner: for exploratory research as well as detailed design
studies. As a part of the research, the Fourier BEM in bArd was interfaced with the struc-
tural analysis program SATURN, which is also Fourier series based. This enables designers
to perform semi-automatic structural-acoustic parameter design studies, and therefore
offers them a valuable tool for the acoustic design of a large class of axisymmetric MRI
scanners.

The application of the Fourier BEM is certainly not restricted to MRI scanners; it can be
used for various other axisymmetric acoustic radiation problems. Exemplary engineering
applications of the presented Fourier BEM formulation can be found in the research of
Geerts [1997] on the acoustic radiation of train wheels, and in the research of van Houten
[1998] on the structural-acoustic optimization of carillon bells.

7.1.3 Radiation modes formulation

To obtain insight into the acoustically important components of the vibration distribution
of the MRI scanner, the radiation modes formulation was used. The formulation presented
in the literature was enhanced to enable the analysis of vibrating substructures in other-
wise acoustically passive systems.

With the radiation modes analysis, it is possible to compute the maximum achievable ra-
diation efficiency at each frequency, for a given radiating geometry. At frequencies where
the actual radiation efficiency is near its maximum achievable value, decreasing the vibra-
tion level of both the most efficient radiation mode and in total will result in a substantial
decrease of the total sound power. This design rule was found in MRI scanner studies, but
is equally applicable to other vibrating structures, because the radiation modes analysis is
not restricted to a specific geometry or acoustic analysis method.
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Design alterations to an important class of structural parameters of sound radiating struc-
tures (e.g. the material properties, support, or load) only change the boundary conditions
of the acoustic problem, not the geometry of the acoustic domain itself. This observation
was exploited in a modal reduction technique, based on the radiation modes formulation.
This reduction technique can be utilized in global structural-acoustic parameter or opti-
mization design studies, in order to quickly compute the radiated sound power. For each
geometry, a radiation modes analysis needs to be performed only once, and in subsequent
analyses the results can be reused. This can significantly speed up the acoustic analysis
part in structural-acoustic design studies. However, this advantage can only be exploited if
the radiated sound power is an appropriate design objective function for low-noise design.
For the MRI scanner, this is considered in section 7.1.4.

Specifically for the MRI scanner, it appears that application of the radiation modes reduc-
tion technique is advantageous for an additional reason. It was shown that a quite limited
number of radiation modes is important for the acoustic behavior of the scanner. This
could be explained by the cut-on effects inside the scanner bore, which limits the number
of Fourier-Bessel duct modes that radiate acoustic energy outside of the bore.

7.1.4 Acoustic design of MRI scanners

The newly developed mathematical tools were deployed in a series of numerical experi-
ments. These experiments demonstrate the use of these tools and answer a number of
questions related to their application. First, the influence of the MRI scanner geometry
on the noise production was established. The minimum duct radius of the part of the
bore with constant cross-section determines the location of the cut-on frequencies and
consequently the location of the near cut-on resonances. Furthermore, it was seen that a
gradually changing bore radius seems to decrease the peak values of the maximum achiev-
able radiation efficiency that are caused by these resonances. The outer diameter of the
scanner only marginally influences the acoustic response in the low frequency range and
is therefore an unimportant design parameter.

Next, the acoustic influence of the presence of a patient in a realistically shaped scanner
was assessed. A patient with acoustically-hard clothing inside the scanner was observed to
shift the location of the cut-on frequencies downwards. By introducing absorptive clothing
for the patient this down-shift was canceled out. Only a moderate decrease in the radiated
power and pressure was observed in the low frequency range, which was caused by the
increased absorption in the acoustic system. From these observations it was concluded
that it would be unnecessary to model the presence of the patient in an acoustic scanner
model, because it is not expected to alter the effectiveness of acoustic design changes.

In another series of numerical experiments, the potential of the developed tools for design
studies was demonstrated with four parameter studies. The gradient coil system design
was varied for two different MRI scanner geometries, and two different force excitations.
These studies show that the sound power level and the sound pressure level are inter-
changeable as design objective functions, as they respond equally to design changes. The
velocity level was found to correlate poorly to the generated sound.

Another observation from these experiments is that optimum acoustic MRI designs are
characterized by a mismatch between vibration level peaks and near cut-on resonances.
With respect to the designs with the lowest vibration level, an additional noise reduc-
tion of about 5 dB(A) could be achieved by this mismatch. For excitations with only a
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single circumferential harmonic, the difference between optimum and ‘worst-case’ acous-
tic designs is about 15 dB(A), whereas this difference for multiple harmonics excitation
is smaller (about 9 dB(A)). This indicates that the mismatch for multiple harmonics ex-
citation is harder to achieve. Nevertheless, compared to the ‘worst-case’, a significant
noise reduction can be achieved, independently of the vibration level. The relevant design
factors, that determine the mismatch, are the bore geometry and vibration distribution
because they determine the acoustic radiation characteristics. The structural composition
and forcing of the gradient coil system and casing are equally important design factors
because they determine the vibrational behavior.

7.2 Recommendations
• Because of the typical acoustic behavior of MRI scanners, the acoustic models are an

indispensable part in a structural-acoustic design tool. It is therefore recommended to
use these models on a regular basis during the design cycle. But, it is equally important
to use a suitable model in each phase of the design cycle. In the initial phase, simpli-
fied acoustic models should be used to assess the influence of conceptual structural-
acoustic design changes on the noise production of MRI scanners. It will be more prac-
tical to obtain these insights by using the numerical tools than by performing exten-
sive measurements on different MRI scanner concepts. In the subsequent engineering
phase, more elaborate acoustic models should be applied for detailed design studies.
With such studies, it is possible to assess the influence, of the dimensioning of different
parts of the scanner, on the total structural-acoustic behavior. Finally, in the prototyp-
ing phase, experimental validation of optimum numerical designs will be inevitable, but
with an adequate application of the acoustic tools, the number of necessary measure-
ments to obtain a quieter MRI scanner design can be drastically reduced.

• The geometry of the MRI scanner bore was found to have significant influence on the
radiation characteristics. Although, from an acoustic point of view, the geometry of
currently available MRI scanners is not unfavorable compared to duct-like MRI scan-
ners with constant cross-section, it might be possible to further optimize the shape
to achieve a lower noise radiation. The study with the two-sided conical bore (see fig-
ure 6.9(b) indicates that the current bore geometry still leaves some room for improve-
ments. It is worthwhile to investigate whether such improvements can be achieved.

• The variance of the acoustic response of the MRI scanner due to manufacturing and
material variations was not investigated. But, such an investigation seems to be very
relevant. If the difference between optimal and ‘worst-case’ acoustic designs is equal
to the difference in sound level caused by manufacturing and material inaccuracies,
then the designer might be able to formulate more strict manufacturing and material
standards for low-noise MRI scanner designs. On the other hand, if the differences turn
out to be small, then this indicates that the manufacturing and material standards can be
relaxed from an acoustic point of view. It also indicates that a significant noise reduction
can only be achieved, by applying structural changes that are more drastic than the
changes introduced by the material and manufacturing variations. An investigation of
these variations is therefore recommended.

• For a significant reduction of the noise levels produced by the MRI scanner, it is not
sufficient to take purely acoustic measures only. A substantial noise level reduction can
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only be expected when the vibration level is also decreased considerably. This might be
accomplished by passively or actively isolating the gradient coil system vibration from
the casing structure. An investigation of this concept is therefore recommended. The
developed acoustic tools can then still be applied to investigate the effectiveness of the
design measures, as long as a suitable model for the casing vibrations is available.

• The radiation modes formulation has proven to be a valuable tool in the design pro-
cess, both to obtain insights into the acoustic behavior of a structure and to speed
up design studies by using the modal reduction technique. For this thesis, the method
was implemented for axisymmetric structures in bArd, but for other kinds of struc-
tures the method is not available in commercially available acoustic software codes
until now. This is unfortunate because the radiation modes formulation has a potential
which is similar to the structural modes formulation in the dynamics field. Therefore,
it is recommended that appropriate action is taken by the developers of (commercial)
acoustics software.

• For the MRI noise problem, the structural and acoustic problems were assumed to be
decoupled, and could therefore be separately solved. To enable the analysis of cou-
pled structural-acoustic problems, an enhancement of the tools is required. Such an
enhancement is quite easily realizable since the required system matrices are already
computed as a part of the normal calculations with SATURN and bArd. It is recom-
mended to implement such an enhancement together with the radiation modes for-
mulation of Chen and Ginsberg [1995]. This enables the exploitation of the advantages
of the radiation modes formulation in coupled structural-acoustic analyses.
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A Fourier-Bessel duct modes and their cut-on
frequencies

The inflection points j′mµ of Jm(x) were first introduced in chapter 2. These inflection
points are the zeros of the derivative J′m of the Bessel function of the first kind of order m
with respect to x,

dJm
dx

∣∣∣∣
x= j ′mµ

= 0. (A.1)

These points are used to calculate the radial wavenumbers αmµ = j′mµ/a, and are given in
table A.1 for low circumferential Fourier mode numbers m and radial mode numbers µ.

The cut-on frequency fmµ for a Fourier-Bessel mode (m, µ) in a duct is defined as the
frequency for which the axial wavenumber kmµ = √

(k2 − α2
mµ) equals zero. With duct

radius a and speed of sound c0 this frequency is given by,

fmµ ≡ j′mµc0

2πa
. (A.2)

A Fourier-Bessel duct mode is called cut-on if the excitation frequency is above the mode’s
cut-on frequency. If the frequency is below the cut-on frequency, the mode is called cut-off
and cannot radiate energy out of the duct. Using the speed of sound in air, c0 = 343 m s−1,
the cut-on frequencies for ducts with radii of a = 0.3405 m and a = 0.28 m are given in
tables A.2(a) and A.2(b), respectively.

Figure A.1 illustrates some simple mode shapes in a cross-section of the duct. The number
m denotes the number of nodal diameters and the numberµ denotes the number of nodal
circles minus one for the pressure expansion.

table A.1 Zeros of J′m for Fourier mode number m and radial mode number µ.

m µ = 1 µ = 2 µ = 3 µ = 4
0 0.00 3.83 7.02 10.17
1 1.84 5.33 8.54 11.71
2 3.05 6.71 9.97 13.17
3 4.20 8.02 11.35 14.59
4 5.32 9.28 12.68 15.96
5 6.41 10.52 13.99 17.31
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table A.2 Cut-on frequencies fmµ in Hz for two different duct radii a, for Fourier mode number
m = 1 . . . 10 and radial mode number µ. Frequencies above 2000 Hz were not included.

(a) a = 0.3405 m

m µ = 1 µ = 2 µ = 3 µ = 4
0 0 615 1125 1631
1 296 855 1368 1877
2 490 1075 1598
3 674 1285 1819
4 852 1489
5 1028 1686
6 1203 1881
7 1375
8 1546
9 1718

10 1888

(b) a = 0.28 m

m µ = 1 µ = 2 µ = 3 µ = 4
0 0 748 1368 1984
1 360 1040 1664
2 596 1307 1943
3 820 1563
4 1036 1810
5 1251
6 1463
7 1672
8 1880
9

10

(0,1) (0,2) (0,3)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

figure A.1 Fourier-Bessel mode shapes for the pressure inside the duct. The notation (m, µ) de-
notes the circumferential and radial order of the mode. The white sections indicate positive and the
grey sections denote negative acoustic pressure values.



B Computation of generalized radiation
impedances

B.1 Calculation of Fourier integrals with the residue integration
method
The residue integration method can be used to calculate integrals of the form

∞∫
−∞

num(γ )

den(γ )
e−iγ zdγ ,

and was used in section 2.2.3 to compute Fourier integrals. The residue integration the-
orem [e.g., Kreyszig, 1993,chap 15] states that for a meromorphic integrand f (γ ) (i.e.
analytic on the complex plane except for isolated poles) with simple poles γi inside a
contour C,

C = {−R < γ < R, Im γ = 0} ∪ {γ = Reiθ
, 0 ≤ θ ≤ π}, (B.1)

its contour integral around C equals the summation of its residues at the simple poles,∮
C

f (γ )dγ = 2π i
∑
γ i

Res
γ=γ i

f (γ ), (B.2)

Res
γ=γ i

f (γ ) = Res
γ=γ i

num(γ )

den(γ )
e−iγ z = num(γi )

d
dγ den(γ )

∣∣∣
γ i

e−iγ i z = num(γi )

den′
(γi )

e−iγ i z, (B.3)

where the integral is being taken counterclockwise around the contour C. This contour
can be split up into a part along the real axis and a semi-circle S,

∮
C

f (γ )dγ =
R∫

−R

f (γ )dγ +
∫
S

f (γ )dγ . (B.4)

This result can be used to compute the Fourier integral in equation (2.17), as will be shown
in the following. The Fourier integral in this equation has a meromorphic integrand with
its poles at the zeros for J′m(αa), at γ = ±kmµ. If the limit R → ∞ is taken and Jordan’s
lemma is used, it can be shown that the integral over path S equals zero under certain
conditions for path S and z. This happens for the integral when S closes the contour via
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k

k–

km2

km2–

km1

km1–

kml

kml–

Imc

Rec

C– S–

(if z 0)

C
(if z 0)

S

figure B.1 Integration path in the γ -plane.

the lower half plane for positive z (C = C+ and S = S+) and via the upper half plane
for negative z (C = C− and S = S−). This is illustrated in figure B.1. Then the contour
integral over C+ or C− in the complex plane gives an expression for the Fourier integral
for positive and negative z, respectively. In mathematical terms:

∮
C+

f (γ )dγ = −
−R∫
R

f (γ )dγ +
∫
S+

f (γ )dγ

⇒
∞∫

−∞
f (γ )dγ = − lim

R→∞

∮
C+

f (γ )dγ = −2π i
∑
γ i=kmµ

num(γi )

den′
(γi )

e−iγ z, for z ≥ 0, (B.5)

∮
C−

f (γ )dγ =
R∫

−R

f (γ )dγ +
∫
S−

f (γ )dγ

⇒
∞∫

−∞
f (γ )dγ = lim

R→∞

∮
C−

f (γ )dγ = 2π i
∑

γ i=−kmµ

num(γi )

den′
(γi )

e−iγ z, for z < 0. (B.6)

In this way, the Fourier integral in equation (2.17)
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∞∫
−∞

Jm(αr)

αaJ′m(αa)
e−iγ zdγ ,

can be computed with the residue integration method.

A problem here is the fact that a finite number of poles of the integrand is located on
the integration contour, between −k and k. This makes the result of the integration am-
biguous. The integral is to be interpreted via a suitable deformation of the contour (the
integral of a meromorphic function does not change with deformation of the integration
contour within the region of analyticity). However, this is either over or under the singu-
larity, and the results are not the same. So, without further information this would leave
us, for each singularity, with two possible but different answers!

The argument in order here is causality (i.e. any physical solution vanishes for t → −∞)
which with the present eiωt notation requires the solution to be the analytical continuation
in ω from the lower complex ω half plane. If a small negative imaginary part is added to
ω, it is easily verified that the poles γ = kmµ shift to the lower half plane, and the poles
γ = −kmµ to the upper half plane. So, the contour of integration should be indented
under −kmµ and over +kmµ, as depicted in figure B.1 [see also Skudrzyk, 1971,p.652ff].

The residues for the Fourier integral can be written as

Res
γ=γ i

(
Jm (α(γ )r)

α(γ )aJ′m(α(γ )a)
e−iγ z

)
= Jm(α(γ )r)

a dα(γ )
dγ [α(γ )aJ′ ′m (α(γ )a)+ J′m(α(γ )a)]

e−iγ z

∣∣∣∣∣
γ=γ i

= −α(γi )Jm(α(γi )r)
aγi[α(γi )aJ′′m(α(γi )a)+ J′m(α(γi )a)]

e−iγ i z

=



1
a2kmµ

α
2
mµ a2

α2
mµ a2−m2

Jm (αmµ r)
Jm (αmµ a)e

−ikmµz for z ≥ 0,

−1
a2kmµ

α2
mµ a2

α2
mµ a2−m2

Jm (αmµ r)
Jm (αmµ a)e

ikmµ z for z < 0.

(B.7)

With this result the Fourier integral can be written as

∞∫
−∞

Jm(αr)
αaJ′m(αa)

e−iγ zdγ = −2π i
∞∑
µ=1

α2
mµa2

α2
mµa2 − m2

Jm(αmµr)
Jm(αmµa)

e−ikmµ |z|. (B.8)

B.2 Generalized radiation impedances
The pressure and velocity at the exit of a finite duct that terminates in an infinite flange
can be written as (see section 2.2.5)

p(re, θe, ze) =
∞∑

m=−∞
e−imθe

∞∑
µ=1

PmµJm(αmµre), (B.9)

uz(re, θe, ze) = 1

ρ0c0

∞∑
m=−∞

e−imθe

∞∑
µ=1

VmµJm(αmµre), (B.10)

with coordinates xe = (re, θe, ze) for a point at the duct’s exit. The pressure at a point
x = (r, θ , z) outside the duct (z ≤ −L or z ≥ L) is given by the Rayleigh integral which
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depends on the (axial) velocity at the duct’s exit:

p(x) = iρ0ω

2π

∫
Se

uz(xe )
e−ikR(x,xe)

R(x, xe)
dS, (B.11)

where

R(x, xe ) = |x − xe| =
[
r2 + r2

e − 2rre cos(θ − θe)+ (z − ze)
2
] 1

2
(B.12)

is the distance between a point outside the duct and a point in the duct’s exit, and Se is
the cross-section of the duct’s exit. The expression for uz(xe ) from equation (B.10) can
be substituted into the Rayleigh integral to obtain

p(r, θ , z) = ik
2π

2π∫
0

a∫
0

∞∑
m=−∞

e−imθe

∞∑
µ=1

VmµJm(αmµre)
e−ikR

R
redredθe. (B.13)

For further manipulation it is convenient to eliminate the function of R in equation (B.13).
Sonine’s infinite integral [Watson, 1966,p. 416, eqn. (4), with Im(

√
1 − τ 2 ) ≤ 0 and the

complex integration contour passes above the real axis] is introduced:

e−ikR

−ikR
=

∞∫
0

τ√
1 − τ 2

J0(τkR)dτ . (B.14)

The Bessel function in equation (B.14) may be replaced, at the duct’s exit (z = ze and
thus R = R(r, θ , re, θe)), by use of Neumann’s addition theorem [Watson, 1966,p. 358,
eqn. (1)]:

J0(τkR) =
∞∑

m=−∞
Jm(τkr)Jm(τkre)e

−im(θ−θe). (B.15)

Substituting equation (B.15) in equation (B.14) results in

e−ikR

R
= −ik

∞∑
m=−∞

e−im(θ−θe)

∞∫
0

τ√
1 − τ 2

Jm(τkr)Jm(τkre )dτ . (B.16)

With this result, equation (B.13) (at z = ze) can now be expressed as

p(r, θ , ze ) = k
∞∑

m=−∞
e−imθ

∞∑
µ=1

Vmµ

∞∫
0

τ√
1 − τ 2

Jm(τkr)Dmµ(τ )dτ, (B.17)

where the integration over angle θe has been performed and function Dmµ(τ ) is given by

Dmµ(τ ) = k

a∫
0

Jm(τkr)Jm(αmµr)rdr. (B.18)
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The integral Dmµ(τ ) may be evaluated directly [Watson, 1966,p. 134, eqn. (8)]:

Dmµ(τ ) = τk2a

τ 2k2 − α2
mµ

J′m(τka)Jm (αmµa). (B.19)

Equation (B.9) can now be equated to (B.17) to obtain

∞∑
m=−∞

e−imθ
∞∑
µ=1

PmµJm(αmµr) =

k
∞∑

n=−∞
e−inθ

∞∑
ν=1

Vnν

∞∫
0

τ√
1 − τ 2

Jn(τkr)Dnν(τ )dτ . (B.20)

Multiplying both sides of this equation by eipθ Jp(αpξ r) and integrating over the duct’s
cross-section while exchanging the summation and integration operators gives

∞∑
m=−∞

∞∑
µ=1

Pmµ

2π∫
0

a∫
0

Jm(αmµr)e−imθ Jp(αpξ r)eipθ rdrdθ =

k
∞∑

n=−∞

∞∑
ν=1

Vnν

∞∫
0

τ√
1 − τ 2

2π∫
0

a∫
0

Jn(τkr)e−inθ Jp(αpξ r)eipθ rdrdθDnν(τ )dτ . (B.21)

The orthogonality property for the modes in radial and circumferential direction gives
for the left hand side of equation (B.21) (where αmµ and αpξ are zeros of J′m(αa), J′p(αa),
respectively):

2π∫
0

a∫
0

Jm(αmµr)e−imθJp(αpξ r)eipθ rdrdθ

= δm pδµξπ(a
2 − m2

/α
2
mµ)Jm(αmµa)2

= δm pδµξ2πN2
mµ for m = 0,±1,±2, . . . , and for µ = 1, 2, . . . .

(B.22)

The amplitude of each pressure mode at the duct’s exit are then given by

Pmµ = k

N2
mµ

∞∑
ν=1

Vmν

∞∫
0

τ√
1 − τ 2

a∫
0

Jm(τkr)Jm(αmµr)rdrDmν(τ )dτ,

which can be further simplified by using the definition for Dmµ(τ ) to obtain

Pmµ =
∞∑
ν=1

Vmν

N2
mµ

∞∫
0

τ√
1 − τ 2

Dmµ(τ )Dmν (τ )dτ . (B.23)

Equation (B.23) may be used to express the modal impedance given by

Pmµ =
∞∑
ν=1

ZmµνVmν, for m = 0,±1,±2, . . . , and for µ = 1, 2, . . . , (B.24)
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where

Zmµν = 1

N2
mµ

∞∫
0

τ√
1 − τ 2

Dmµ(τ )Dmν(τ )dτ, (B.25)

and the boundary conditions are satisfied such that J′(αmµa) = 0.

B.3 Computation of generalized radiation impedances
To compute the integral in equation (B.25), Zorumski [1973] suggested to split up the
integration range in a part τ ∈ [0, 1] and τ ∈ [1,∞]. By using change of variables τ = sin φ
for the first range and τ = coshψ for the second, the expression for the generalized
modal impedance becomes

Zmµν = 1

N2
mµ

1
2 π∫

0

sinφDmµ(sin φ)Dmν(sin φ)dφ

+ i
N2

mµ

∞∫
0

coshψDmµ(coshψ)Dmν(coshψ)dψ.

(B.26)

At first sight, this seems to be an elegant solution since the integral is split up in a real
and imaginary part, and the singularity for τ = 1 has been removed by the transformation.
However, because of the oscillatory nature of the function Dmµ(τ ), numerical evalua-
tion of the integral is very expensive. To make things worse, the oscillatory behavior of
the integrand is blown up by the cosh(ψ ) argument of the function Dmµ(τ ). In brief,
the transformations suggested by Zorumski [1973] do not offer a numerically workable
expression for the generalized radiation impedances. Together with Rienstra [cf. Kuijpers
et al., 1998a] an alternative, numerically more attractive expression was therefore derived,
which will be presented here.

For further manipulation it is convenient to write out Zmµν as

Zmµν = 2α2
mµa2Jm(αmνa)

(α2
mµa2 − m2)Jm(αmµa)

∞∫
0

τ 3J′m(τka)2
√

1 − τ 2(τ 2 − α2
mµ

k2 )(τ
2 − α2

mν
k2 )

dτ . (B.27)

Note that

J′m (τka)

(τ 2 − α2
mµ

k2 )

is analytic (even at τ = αmµ/k). Equation (B.27) can be rewritten to

Zmµν = Emµν

∞∫
0

Fmµν(τ )

[
H(1)′

m (τka) + H(2)′
m (τka)

]
dτ, (B.28)
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with Hankel functions

H(1)
m (x) = Jm(x)+ iYm(x), (B.29)

H(2)
m (x) = Jm(x)− iYm(x), (B.30)

and

Emµν = 2α2
mµa

2Jm(αmνa)

(α2
mµa2 − m2)Jm(αmµa)

, (B.31)

and

Fmµν(τ ) = 1

2

τ 3

√
1 − τ 2

1

(τ + αmµ/k)(τ + αmν/k)

J′m(τka)

(τ − αmµ/k)(τ − αmν/k)
. (B.32)

The function Fmµν(τ ) is analytic, except for the case µ = ν when the poles coincide.
Rewriting equation (B.28) yields

Zmµν = Emµν


∩

∞∫
0

Fmµν(τ )H(1)′
m (τka)dτ + ∩

∞∫
0

Fmµν(τ )H(2)′
m (τka)dτ


 (B.33)

= Emµν

[
Z (1)

mµν + Z (2)
mµν

]
, (B.34)

where ∩
∫

denotes that the integration path is deformed and passes above the pole τ =
αmµ/k for µ = ν. These integrals can be computed by using contour deformation in the
complex plane. With the help of the equations

H(1)′
m (ix) = 2

π
(−i)m+2K′

m(x), arg(x) ∈ (−π, 1

2
π], (B.35)

H(2)′
m (−ix) = 2

π
(i)m+2K′

m(x), arg(x) ∈ (−1

2
π, π], (B.36)

with the modified Hankel function

Km(x) =
{

1
2π im+1H(1)

m (ix), arg(x) ∈ (−π, 1
2π],

1
2π im+1H(1)

m (ix)− 2π i(−1)mIm(x), arg(x) ∈ ( 1
2π, π],

(B.37)

=
{

1
2π(−i)m+1H(2)

m (−ix), arg(x) ∈ (− 1
2π, π],

1
2π(−i)m+1H(2)

m (−ix)+ 2π i(−1)mIm(x), arg(x) ∈ (−π,− 1
2π],

(B.38)

and with the modified Bessel function of the first kind

Im(x) = i−mJm(ix), (B.39)
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the components of equation (B.34) can be written as

Z (1)
mµν =

∞∫
0

Fmµν(iτ )
2

π
(−i)m+1K′

m(τka)dτ, (B.40)

Z (2)
mµν =2

1∫
0

Fmµν(τ )H(2)′
m (τka)dτ +

∞∫
0

Fmµν(−iτ )
2

π
im+1K′

m(τka)dτ

+ δµν2π i Res
τ=αmµ /k

Fmµµ(τ )H(2)′
m (τka).

(B.41)

Combining these terms yields

Zmµν = 2Emµν


 1∫

0

Fmµν(τ )H
(2)′
m (τka)dτ + i

π

∞∫
0

τ 3I′m (τka)K′
m(τka)

√
1 + τ 2(τ 2 + α2

mµ

k2 )(τ
2 + α2

mν
k2 )

dτ

+ δµνπ i Res
τ=αmµ /k

Fmµµ(τ )H(2)′
m (τka)


 . (B.42)

The singularity in Fmµν(τ ) for τ = 1 in equation (B.42) can be removed by substituting
τ = sin(θ ):

1∫
0

τ 3

2
√

1 − τ 2

J′m(τka)H(2)′
m (τka)

(τ 2 − α2
mµ/k2)(τ 2 − α2

mν/k2)
dτ =

1
2 π∫

0

sin3(θ )J′m(sin(θ )ka)H(2)′
m (sin(θ )ka)

2(sin2(θ )− α2
mµ/k2)(sin2(θ )− α2

mν/k2)
dθ . (B.43)

The infinite integral in equation (B.42) can be transformed to two finite integrals by split-
ting the integration interval [0,∞] into [0, 1] and [1,∞] and using the substitution t = 1/τ
for the second interval:

∞∫
0

τ 3I′m (τka)K′
m(τka)

√
1 + τ 2(τ 2 + α2

mµ

k2 )(τ
2 + α2

mν
k2 )

dτ =

1∫
0

τ 3I′m(τka)K′
m (τka)

√
1 + τ 2(τ 2 + α2

mµ

k2 )(τ
2 + α2

mν
k2 )

dτ +
1∫

0

I′m(ka/t)K′
m(ka/t)

√
t2 + 1(1 + α2

mµ t 2

k2 )(1 + α2
mν t

2

k2 )
dt. (B.44)

With limits

lim
x→0

x2I′m(x)K
′
m(x) =

{
− 1

2 x2 for m = 0,

− 1
2 m for m ≥ 1,

(B.45)

lim
x→∞ I′m(x)K

′
m(x) = 0, (B.46)
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it can be shown that the first integrand approaches zero for τ → 0, and that the second
integrand also approaches zero for t → 0.

When µ = ν the residue at pole τ = αmµ = αmν has to be taken into account. Four cases
can be distinguished: (1) the pole is not on the branch of 1/

√
1 − τ 2; (2) the pole lies on

the branch of 1/
√

1 − τ 2, but not in 0 or 1; (3) the pole lies at τ = 0; (4) the pole lies at
τ = 1.

In case (1) τ > 1 or αmµ/k = αmν/k > 1. This means that the free field wavenumber k
is smaller than radial wavenumber αmµ, in other words, the mode is cut-off (evanescent).
The residue at this pole is

Res
τ=αmµ /k

EmµµFmµµ(τ )H(2)′
m (τka) = Emµµ(α

2
mµa2 − m2)

4πα2
mµa2

√
(αmµ/k)2 − 1

. (B.47)

In case (2) 0 < τ < 1 or 0 < αmµ/k < 1 the pole lies on the branch of 1/
√

1 − τ 2. This
means that the free field wavenumber k is larger than radial wavenumber αmµ, in other
words, the mode is cut-on (propagating). The pole is not inside the integration contour,
and it can be shown that it has no contribution to the modal impedance. However, the
finite integral in equation (B.42) must then be interpreted as a Cauchy Principal Value
integral:

Zmµµ = 2Emµµ


CPV

1∫
0

Fmµµ(τ )H(2)′
m (τka)dτ + i

π

∞∫
0

τ 3I′m(τka)K′
m(τka)

√
1 + τ 2(τ 2 + α2

mµ

k2 )
2
dτ


 . (B.48)

In case (3) the pole lies on τ = αmµ/k = 0. This can only happen for the plane wave mode
(m = 0, µ = ν = 1 and α01 = 0). The modal impedance is then defined as

Z011 = 2E011

∞∫
0

J21(τka)

2τ
√

1 − τ 2
dτ . (B.49)

The identity

J1(x) = 1

2

[
H(1)

1 (x)+ H(2)
1 (x)

]
,

is used to transform the integral in equation (B.49) into

Z011 = E011 lim
ε→0


 ∞∫
ε

J1(τka)H(1)
1 (τka)

2τ
√

1 − τ 2
dτ +

∞∫
ε

J1(τka)H(2)
1 (τka)

2τ
√

1 − τ 2
dτ


 . (B.50)

Deformation of the complex integration path similar to the derivation used for equa-
tion (B.34) can be used. It can be shown that the pole at τ = 0 has no contribution. The
resulting expression for the modal ‘self’ impedance of the plane wave,

Z011 = 2E011 lim
ε→0


2

1∫
ε

J1(τka)H(2)
1 (τka)

2τ
√

1 − τ 2
dτ − i

π

∞∫
ε

I1(τka)K1(τka)

τ
√

1 + τ 2
dτ


 , (B.51)
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contains two integrals whose integrands are singular for ε → 0, but their contributions
cancel each other. Therefore, it is convenient to combine the integrands in the region
τ ∈ [0, 1]:

Z011 = 2E011




1∫
0

[
J1(τka)H(2)

1 (τka)

2τ
√

1 − τ 2
− i

π

I1(τka)K1(τka)

τ
√

1 + τ 2

]
dτ

− i

π

∞∫
1

I1(τka)K1(τka)

τ
√

1 + τ 2
dτ


 . (B.52)

The singularity in the first integrand for τ = 1 can be removed by substituting τ = sin(θ )
and the second integral can be transformed into a finite integral by substituting τ = 1/t.
Thus, the modal impedance is defined by

Z011 = 2E011




1
2 π∫

0

[
J1(ka sin θ )H(2)

1 (ka sin θ )

2 sin θ
− i

π

I1(ka sin θ )K1(ka sin θ ) cos θ

sin θ
√

1 + sin2 θ

]
dθ

− i

π

1∫
0

I1(ka/t)K1(ka/t)√
t2 + 1

dt


 . (B.53)

In case (4) the pole lies on τ = αmµ/k = 1. This means that the free field wavenumber
k equals the radial wavenumber αmµ. The axial wavenumber: kmµ = √

(k2 − α2
mµ) then

equals zero. Physically, this occurs at duct mode resonance frequencies which are not
studied here.

B.4 Radiated acoustic power
To obtain an expression for the time-averaged power radiated by the baffled finite duct,
that was used in section 2.3.2, the time average of the acoustic normal intensity Ī · n has
to be integrated over a surface that surrounds the duct,

P̄ =
∫
S

Ī · ndS, (B.54)

with surface S, I = pu as the acoustic energy flux vector, and n as the unit normal vector.
The bar notation ¯ denotes the time average.

B.4.1 Duct wall power radiation

The radiated power by the duct can be computed by integrating the time-averaged product
of acoustic pressure p and normal velocity ur over the duct wall surface:

P̄ = −1

2
Re

L∫
−L

2π∫
0

p(a, θ , z)u∗
r (a, θ , z)adθdz, (B.55)
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where ∗ denotes the complex conjugate. By using equation (2.37) for pressure p and
equation (2.20) for normal velocity ur the following expression for the acoustic normal
intensity at the duct wall can be derived:

Ī · n = 1

2π

∞∑
m=−∞

e−imθ
∞∑

n=−∞
η∗

n (z)e
inθ

∞∑
µ=1

Jm(αmµa)
[
Amµ(z)e−ikmµ z + Bmµ(z)eikmµ z

]
.

(B.56)

Integrating this expression over the duct wall surface yields

P̄ = 1

2
a Re

∞∑
m=−∞

∞∑
µ=1

Jm(αmµa)

L∫
−L

η∗
m(z)

[
Amµ(z)e−ikmµ z + Bmµ(z)eikmµ z

]
dz. (B.57)

B.4.2 Duct exit power radiation

The transmitted power in the axial (positive z) direction Pz over a duct’s cross-section can
be computed by integrating the time-averaged product of acoustic pressure p and axial
velocity uz over the cross-section:

P̄z(z) = 1

2
Re

a∫
0

2π∫
0

p(r, θ , z)u∗
z (r, θ , z)rdθdr. (B.58)

Using equation (2.37) for pressure p, and

uz(r, θ , z) =
∞∑

m=−∞

∞∑
µ=1

Jm(αmµr)e−imθ kmµ

ρ0c0k

(
Amµ(z)e−ikmµ z − Bmµ(z)eikmµ z

)
(B.59)

for axial velocity uz, the following expression for the acoustic axial intensity at the duct’s
exit can be derived:

Ī · ez =
∞∑

m=−∞

∞∑
n=−∞

∞∑
µ=1

∞∑
ν=1

e−imθeinθ Jm(αmµr)Jn(αnνr)
k∗

nν

kρ0c0
×

[
Amµ(z)A∗

nν(z)e
−i(kmµ−k∗

nν )z − Amµ(z)B∗
nν(z)e

−i(kmµ+k∗
nν )z

+ Bmµ(z)A∗
nν(z)e

i(kmµ+k∗
nν )z − Bmµ(z)B∗

nν(z)e
i(kmµ −k∗

nν )z
]
.

(B.60)

Integrating this expression over the duct’s cross-section yields

P̄z(z) =
∞∑

m=−∞

∞∑
µ=1

πN2
mµ

ρ0c0k
×

{
Re(kmµ)

[
|Amµ(z)|2 − |Bmµ(z)|2

]
+ 2 Im(kmµ) Im

[
A∗

mµ(z)Bmµ(z)
]}
. (B.61)

with N2
mµ from equation (B.22). The total acoustic power radiated out of the duct can

then be computed with

P̄ = P̄z(L) − P̄z(−L). (B.62)
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C Gradient coil system excitation

In chapters 5 and 6 the acoustic domain outside the MRI scanner is excited by vibrations of
the gradient coil system. This vibration distribution was calculated with a structural finite
element method (FEM) model of the gradient coil system, which was derived from Kessels
[1999]. The structural model is axisymmetric, but the excitation is non-axisymmetric,
so Fourier elements were used in the FEM calculations. These FEM calculations were
performed with the program SATURN [Kessels et al., 1998].

The gradient coil system was modeled as a thick-walled cylinder with five homogeneous
layers: a composite (copper/epoxy) conductor layer of 10 mm, an epoxy layer of 30 mm ,
a glass layer of 20 mm, and again a 30 mm epoxy layer and a 10 mm composite conductor
layer, respectively, see figure C.1. The material properties of the gradient coil system layers
can be found in table C.1.

The geometry of the gradient coil cylinder was chosen to resemble a real gradient coil
system, with a total length of 2l = 1.455 m, and an inner radius of a = 0.3405 m. The
cylinder was rigidly supported at the ends and was excited using a stylized realistic Lorentz
force distribution derived from Kessels [1999]. The force was assumed to be frequency

l

-1000

1000

ra
di

al
fo

rc
e

[N
/m

]
at

ou
te

r
ra

di
us

0-l

0

-1000

1000

ra
di

al
fo

rc
e

[N
/m

]
at

in
ne

r
ra

di
us

0

t3t2
ttot

epoxy layer

conductor

rigid support

t5

t1

glass layer

5
4
3
2
1

t4

layer materials in
gradient coil system

l- l

axial coordinate z

figure C.1 Description of the material layers of the gradient coil system and the stylized Lorentz
force distributions for the structural FEM calculations.
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table C.1 Material properties of the gradient coil system layers.

layers 1,5 layers 2,4 layer 3
(composite)

epoxy copper epoxy glass (Pyrex)
Young’s modulus [GPa] 3.4 + 0.68i 117.0 3.4 + 0.68i 62.0
Poisson’s ratio [−] 0.35 0.30 0.35 0.24
density [kg m−3 ] 1250 8941 1250 2300
volume fraction [−] 0.05 0.95 1.00 1.00

independent to account for a large class of possible frequency spectra. Since the force
excitation level for the first circumferential harmonic m = 1 was dominant, only this
harmonic was used in the structural calculations. The resulting vibration distribution is a
function of the frequency and has complex amplitudes because of the material damping in
the epoxy layer. The resulting vibration level spectrum is shown in figure 5.2.

In this thesis, the term representative vibration distribution is used for the vibrations
which were computed as outlined here. But these vibrations are only representative to
a certain extent. Firstly, the force distribution is not the real distribution but a stylized
version, both spatially and as a function of the frequency. Secondly, the materials that
were used here are similar to, but not exactly the same as materials used in gradient coil
systems produced nowadays. Measurements of the vibration levels [Kooyman et al., 1993;
Kessels, 1999] show that the resonance peaks that are present in the computed vibration
level are lower in practice. Thirdly, the computed vibration distribution only contains the
m = 1 circumferential harmonic, while a vibration distribution of real scanner’s gradient
coil system also has other harmonics. This is probably caused by imperfections in the
materials in circumferential direction [Kessels, 1999]. This will be shortly discussed next.

In the structural Fourier FEM model used here, the material layers are assumed to be ho-
mogeneous. But, in practice the layers are not homogeneous. Instead, small imperfections
in circumferential direction exist, which causes a coupling of the separate Fourier har-
monic responses. So, the excitation with an m = 1 force harmonic can result in multiple
circumferential harmonics in the vibration response [Kessels, 1999]. The imperfections
could not be handled by the Fourier finite element method that was used for this thesis,
so this coupling behavior has been neglected; here the vibrations only contain the m = 1
harmonic component. Therefore, the vibration distribution used here is only represen-
tative for gradient coil systems with purely homogeneous material layers, or for gradient
coil systems where the cross coupling of the harmonics can be neglected. An improved
Fourier finite element method which can handle material imperfections is described by
Kessels [1999], together with an extensive discussion about the implications of structural
harmonics coupling for the MRI scanner model.
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